日時 2004年 11月 30日(火) 15時〜16時40分 場所 経済学部新棟3階第3教室 講演者 Peter E. Rossi(University of Chicago) 演題 Response Modeling with Non-Random Marketing Mix Variables 概要: Sales response models are widely used as the basis for optimizing the marketing mix or for allocation of the sales force. Response models condition on the observed marketing mix variables and focus on the specification of the distribution of observed sales given marketing mix activities. These models usually fail to recognize that the levels of the marketing mix variables are often chosen with at least partial knowledge of the response parameters in the conditional model. This means that, contrary to standard assumptions, the marginal distribution of the marketing mix variables is not independent of response parameters. We expand on the standard conditional model to include a model for the determination of the marketing mix variables. We apply this modeling approach to the problem of gauging the effectiveness of sales calls (details) to induce greater prescribing of drugs by individual physicians. We do not assume, a priori, that details are set optimally but, instead, infer the extent to which sales force managers have knowledge of responsiveness and use this knowledge to set the level of sales force contact. We find that physicians are not detailed optimally; high volume physicians are detailed to a greater extent than low volume physicians without regard to responsiveness to detailing. In fact, it appears that unresponsive but high volume physicians are detailed the most.
Tokyo University