日時 2005年 5月 24日(火) 15時〜16時40分 場所 経済学部新棟3階第3教室 講演者 竹村 彰通(数理情報) 演題 Arrangements and Ranking Patterns 概要: In the unidimensional unfolding model, given m objects in general position on the real line, there arise 1+m(m-1)/2 rankings. The set of rankings is called the ranking pattern of the m given objects. Change of the position of these m objects results in change of the ranking pattern. In this paper we use arrangement theory to determine the number of ranking patterns theoretically for all m and numerically for m <= 8. We also consider the probability of the occurrence of each ranking pattern when the objects are randomly chosen. (joint work with Hidehiko Kamiya, Peter Orlik and Hiroaki Terao)
Tokyo University