統計学輪講(第6回)

日時    2005年 5月 24日(火)  15時〜16時40分
場所    経済学部新棟3階第3教室
講演者  竹村 彰通(数理情報)
演題    Arrangements and Ranking Patterns
概要:
In the unidimensional unfolding model, given m objects in general position
on the real line, there arise 1+m(m-1)/2 rankings. The set of rankings is
called the ranking pattern of the m given objects.  Change of the position
of these m objects results in change of the ranking pattern. In this paper
we use arrangement theory to determine the number of ranking patterns
theoretically for all m and numerically for m <= 8.  We also consider the
probability of the occurrence of each ranking pattern when the objects are
randomly chosen.  (joint work with Hidehiko Kamiya, Peter Orlik and
Hiroaki Terao)



統計学輪講のスケジュールに戻る.


Tokyo University