日時 2010年07月13日(火) 15時00分~16時40分 場所 経済学部新棟3階第3教室 講演者 鈴木 大慈 (情報理工) 演題 Elasticnet型正則化を持つMultiple Kernel Learningについて 概要 Mutiple Kernel Learning (MKL) はGroup Lassoをカーネル法へ拡張した手法であり, 多くの候補となるカーネルの中から必要なカーネルを選びそれらの凸結合を取って カーネルを学習する方法である.凸最適化で解ける点と多くのカーネルの結合係数 を0にするスパース性を有するという利点がある.しかし最近になって,一様重みで 単純にカーネルを足し合わせる方法とMKLの中間にあたるような,「中間的なスパー スさ」が画像認識などの応用で良い性能を示すことが実験的に示されている.本発表 ではその「中間的なスパースさ」を実現する方法としてelasticnet型正則化を持つ MKLを扱い,その効率的な計算アルゴリズムや,漸近的な収束性能について議論する. 漸近的な収束性能については,真のカーネル結合係数がスパースな場合とそうでない 場合で状況を分けて考え,minimaxレートを達成することや,普通のMKLより少し緩い 条件でスパースパターンの一致性があることなどelasticnet型MKLにはいくつかの 良い性質があることを示す.