A solution to the "exercise" in the slide p.17

Tomonari SEI

Apr 7, 2017 (Ver. 2)

This document is a supplementary material for the first lecture (Apr 6), available from

http://www.stat.t.u-tokyo.ac.jp/~sei/lec.html

We first solve the problem for N = 2 case. This case is most important to understand.

1 The problem for N = 2 case

Let T_1 and T_2 be independent random variables with

$$P(T_1 > t) = P(T_2 > t) = e^{-\alpha t}, \quad t \ge 0,$$

for some $\alpha > 0$. Define U_1 and U_2 by

$$U_1 = T_{(1)}$$
 and $U_2 = T_{(2)} - T_{(1)}$,

where *1

$$T_{(1)} = \min(T_1, T_2)$$
 and $T_{(2)} = \max(T_1, T_2).$ (1)

The problem is to show that U_1 and U_2 are independent, and

$$P(U_1 > t) = e^{-2\alpha t}, \quad P(U_2 > t) = e^{-\alpha t}.$$

2 Preliminaries

See the slides p.26 to p.29 (or any book on probability) for relevant definitions. The distribution function F(t) of T_i (i = 1, 2) is

$$F(t) = P(T_i \le t)$$

= 1 - P(T_i > t)
= 1 - e^{-\alpha t}

^{*1} The random variable $\min(T_1, T_2)$ should be interpreted as the function $\omega \mapsto \min(T_1(\omega), T_2(\omega))$. Refer to the slide p.26 for the definition of random variables. The same applies to $\max(T_1, T_2)$.

for $t \ge 0$. This distribution is called the exponential distribution. Its density function is

$$f(t) = \frac{dF(t)}{dt} = \alpha e^{-\alpha t}.$$

The joint density function of T_1 and T_2 is, by independence,

$$f(t_1, t_2) = f(t_1)f(t_2)$$
$$= \alpha e^{-\alpha t_1} \alpha e^{-\alpha t_2}.$$

We use the following two facts as mentioned in the lecture.

Lemma 1. Let T_1 and T_2 be independent and identically distributed random variables with a density function f(t). Define $T_{(1)}$ and $T_{(2)}$ by Equation (1). Then the joint density function of $T_{(1)}$ and $T_{(2)}$ is

$$f_{T_{(1)},T_{(2)}}(t_1,t_2) = \begin{cases} 2f(t_1)f(t_2) & \text{if } t_1 < t_2, \\ 0 & \text{if } t_1 > t_2. \end{cases}$$

Proof. Fix $t_1 < t_2$. Consider two intervals $J = [t_1 - \delta, t_1 + \delta]$ and $K = [t_2 - \delta, t_2 + \delta]$ for small $\delta > 0$ such that $J \cap K = \emptyset$. Then

$$\begin{split} P(T_{(1)} \in J, \ T_{(2)} \in K) &= P(T_1 \in J, \ T_2 \in K) + P(T_1 \in K, \ T_2 \in J) \\ &= \int_J \int_K f(t_1, t_2) dt_1 dt_2 + \int_K \int_J f(t_1, t_2) dt_1 dt_2 \\ &= \int_J \int_K f(t_1) f(t_2) dt_1 dt_2 + \int_K \int_J f(t_1) f(t_2) dt_1 dt_2 \\ &= \int_J \int_K 2f(t_1) f(t_2) dt_1 dt_2. \end{split}$$

Since δ is arbitrary, we deduce that the joint density of $(T_{(1)}, T_{(2)})$ at (t_1, t_2) is $2f(t_1)f(t_2)$ whenever $t_1 < t_2$. The joint density is zero if $t_1 > t_2$ since $T_{(1)} \leq T_{(2)}$ by definition.

Lemma 2 (Change of variables formula). Let (X_1, X_2) be a random vector with the joint density function $f(x_1, x_2)$, and $\psi : \mathbb{R}^2 \to \mathbb{R}^2$ be a one-to-one map. Define a random vector (Y_1, Y_2) by

$$(X_1, X_2) = \psi(Y_1, Y_2),$$

or equivalently $(Y_1, Y_2) = \psi^{-1}(X_1, X_2)$. Then the density function $g(y_1, y_2)$ of (Y_1, Y_2) is

$$g(y_1, y_2) = f(\psi(y_1, y_2)) \left| \frac{\partial(x_1, x_2)}{\partial(y_1, y_2)} \right|$$

where $|\cdot|$ denotes the determinant and

$$\frac{\partial(x_1, x_2)}{\partial(y_1, y_2)} = \begin{pmatrix} \partial x_1 / \partial y_1 & \partial x_1 / \partial y_2 \\ \partial x_2 / \partial y_1 & \partial x_2 / \partial y_2 \end{pmatrix}.$$

Proof. For any subset $A \subset \mathbb{R}^2$, we have

$$P((Y_1, Y_2) \in A) = P((X_1, X_2) \in \psi(A))$$

= $\int_{\psi(A)} f(x_1, x_2) dx_1 dx_2$
= $\int_A f(\psi(y_1, y_2)) \left| \frac{\partial(x_1, x_2)}{\partial(y_1, y_2)} \right| dy_1 dy_2$

by the change of variables formula for integration. This implies the result.

3 The solution for N = 2 case

By Lemma 1, the joint density function of $(T_{(1)}, T_{(2)})$ is

$$f_{T_{(1)},T_{(2)}}(t_1,t_2) = 2f(t_1)f(t_2)$$

= $2\alpha^2 e^{-\alpha t_1} e^{-\alpha t_2}$

if $t_1 < t_2$, and 0 otherwise.

Next we derive the joint density function $g(u_1, u_2)$ of $U_1 = T_{(1)}$ and $U_2 = T_{(2)} - T_{(1)}$ by using Lemma 2. As we can write

$$T_{(1)} = U_1, \quad T_{(2)} = U_1 + U_2,$$

we define the map ψ by

$$(t_1, t_2) = \psi(u_1, u_2) = (u_1, u_1 + u_2)$$

The Jacobian is

$$\left|\frac{\partial(t_1, t_2)}{\partial(u_1, u_2)}\right| = \left|\begin{pmatrix}1 & 0\\1 & 1\end{pmatrix}\right| = 1.$$

Thus we obtain

$$g(u_1, u_2) = f_{T_{(1)}, T_{(2)}}(u_1, u_1 + u_2)$$

= $2\alpha^2 e^{-\alpha u_1} e^{-\alpha (u_1 + u_2)}$
= $(2\alpha e^{-2\alpha u_1})(\alpha e^{-\alpha u_2})$

if $u_1, u_2 > 0$, and $g(u_1, u_2) = 0$ otherwise. This implies that U_1 and U_2 are independent, and their marginal density functions are

$$g_1(u_1) = 2\alpha e^{-2\alpha u_1}$$
 and $g_2(u_2) = \alpha e^{-\alpha u_1}$,

respectively, since $\int_0^\infty g_i(u_i) du_i = 1$ for i = 1, 2. Finally, we have

$$P(U_1 > t) = \int_t^\infty 2\alpha e^{-2\alpha u_1} du_1 = e^{-2\alpha t}, \quad P(U_2 > t) = \int_t^\infty \alpha e^{-\alpha u_2} du_2 = e^{-\alpha t}.$$

4 Remark

The distribution of U_1 is easy to obtain:

$$P(U_1 > t) = P(T_{(1)} > t)$$

= $P(\min(T_1, T_2) > t)$
= $P(T_1 > t, T_2 > t)$
= $P(T_1 > t)P(T_2 > t)$ (by independence)
= $e^{-\alpha t}e^{-\alpha t}$
= $e^{-2\alpha t}$.

This method was not mentioned in the lecture.

We obtain the conditional distribution of U_2 given U_1 in a similar way. However, it needs a careful treatment on conditional probability and is omitted here.

The rest is about the solution for general N. It is not necessary to understand completely. Don't be afraid!

5 The problem (for general N)

Let T_1, \ldots, T_N be independent random variables with

$$P(T_n > t) = e^{-\alpha t}, \quad t \ge 0, \tag{2}$$

for some $\alpha > 0$. Define U_1, \ldots, U_N by

$$U_1 = T_{(1)}, \quad U_n = T_{(n)} - T_{(n-1)}, \quad n \ge 2,$$

where $T_{(n)}$ denotes the *n*-th smallest value in T_1, \ldots, T_N . The random variables $T_{(1)}, \ldots, T_{(N)}$ are sometimes called *the order statistics* of T_1, \ldots, T_N .

The problem is to show that U_1, \ldots, U_N are independent and that

$$P(U_n > t) = e^{-(N-n+1)\alpha t}$$

for $n = 1, \ldots, N$.

6 Solution (for general N)

The joint density function $f(t_1, \ldots, t_N)$ of T_1, \ldots, T_N is, by independence,

$$f(t_1, \dots, t_N) = \prod_{n=1}^N f(t_n)$$
$$= \prod_{n=1}^N \alpha e^{-\alpha t_n}.$$

We use the following two lemmas as in the N = 2 case. The proof is similar and omitted.

Lemma 3. Let T_1, \ldots, T_N be independent and identically distributed random variables with a density function f(t). Then the joint density function of the order statistics $T_{(1)}, \ldots, T_{(N)}$ is given by^{*2}

$$f_{T_{(1)},\dots,T_{(N)}}(t_1,\dots,t_N) = \begin{cases} N! \prod_{n=1}^N f(t_n) & \text{if } t_1 < t_2 < \dots < t_N, \\ 0 & \text{otherwise.} \end{cases}$$

Lemma 4. Let $\mathbf{X} = (X_1, \ldots, X_N)$ be a random vector with the joint density function $f(\mathbf{x})$, and $\psi : \mathbb{R}^N \to \mathbb{R}^N$ be a one-to-one map. Define a random vector $\mathbf{Y} = (Y_1, \ldots, Y_N)$ by

$$\boldsymbol{X} = \psi(\boldsymbol{Y}).$$

Then the joint density function $g(\boldsymbol{y})$ of \boldsymbol{Y} is

$$g(\boldsymbol{y}) = f(\psi(\boldsymbol{y})) \left| \frac{\partial \boldsymbol{x}}{\partial \boldsymbol{y}} \right|.$$

By Lemma 3, the joint density of $T_{(n)}$'s in our problem is

$$f_{T_{(1)},\dots,T_{(N)}}(t_1,\dots,t_N) = N! \prod_{n=1}^N f(t_n)$$
$$= N! \prod_{n=1}^N \alpha e^{-\alpha t_n}$$

if $t_1 < \cdots < t_N$, and 0 otherwise.

Next we derive the joint density function $g(u_1, \ldots, u_N)$ of U_n 's by using Lemma 4. As we can write

$$T_{(n)} = \sum_{k=1}^{n} U_k,$$

 $^{^{\}ast 2}~$ The factorial N! comes from the number of permutations of N distinct real numbers.

we define the map $\psi : \mathbb{R}^N \to \mathbb{R}^N$ by

$$\psi(u_1,\ldots,u_N) = (u_1, u_1 + u_2, \ldots, u_1 + \cdots + u_N).$$

The Jacobian determinant is shown to be 1. Therefore

$$g(u_1, \dots, u_N) = f_{T_{(1)}, \dots, T_{(n)}}(u_1, u_1 + u_2, \dots, u_1 + \dots + u_N)$$

= $N! \prod_{k=1}^N \alpha e^{-\alpha \sum_{i=1}^k u_i}$
= $N! \prod_{n=1}^N \alpha e^{-(N+1-n)\alpha u_n}$
= $\prod_{n=1}^N (N+1-n)\alpha e^{-(N+1-n)\alpha u_n}$ (3)

if $u_1, \ldots, u_N > 0$, and $g(u_1, \ldots, u_N) = 0$ otherwise. The reason why the factorial N! is shared as Equation (3) is to make each factor a density function. Equation (3) shows that U_1, \ldots, U_N are independent, and the density function of U_n for each n is

$$(N+1-n)\alpha e^{-\alpha(N+1-n)u_n}.$$

Finally, we have

$$P(U_n > t) = \int_t^\infty (N+1-n)\alpha e^{-(N+1-n)\alpha u_n} du_n$$
$$= e^{-(N+1-n)\alpha t}$$

for each n.