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We first solve the problem for N = 2 case. This case is most important to understand.

1 The problem for N = 2 case

Let T1 and T2 be independent random variables with

P (T1 > t) = P (T2 > t) = e−αt, t ≥ 0,

for some α > 0. Define U1 and U2 by

U1 = T(1) and U2 = T(2) − T(1),

where*1

T(1) = min(T1, T2) and T(2) = max(T1, T2). (1)

The problem is to show that U1 and U2 are independent, and

P (U1 > t) = e−2αt, P (U2 > t) = e−αt.

2 Preliminaries

See the slides p.26 to p.29 (or any book on probability) for relevant definitions.

The distribution function F (t) of Ti (i = 1, 2) is

F (t) = P (Ti ≤ t)

= 1 − P (Ti > t)

= 1 − e−αt

*1 The random variable min(T1, T2) should be interpreted as the function ω 7→ min(T1(ω), T2(ω)). Refer

to the slide p.26 for the definition of random variables. The same applies to max(T1, T2).
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for t ≥ 0. This distribution is called the exponential distribution. Its density function is

f(t) =
dF (t)
dt

= αe−αt.

The joint density function of T1 and T2 is, by independence,

f(t1, t2) = f(t1)f(t2)

= αe−αt1αe−αt2 .

We use the following two facts as mentioned in the lecture.

Lemma 1. Let T1 and T2 be independent and identically distributed random variables with

a density function f(t). Define T(1) and T(2) by Equation (1). Then the joint density function

of T(1) and T(2) is

fT(1),T(2)(t1, t2) =
{

2f(t1)f(t2) if t1 < t2,
0 if t1 > t2.

Proof. Fix t1 < t2. Consider two intervals J = [t1 − δ, t1 + δ] and K = [t2 − δ, t2 + δ] for small

δ > 0 such that J ∩K = ∅. Then

P (T(1) ∈ J, T(2) ∈ K) = P (T1 ∈ J, T2 ∈ K) + P (T1 ∈ K, T2 ∈ J)

=
∫
J

∫
K

f(t1, t2)dt1dt2 +
∫
K

∫
J

f(t1, t2)dt1dt2

=
∫
J

∫
K

f(t1)f(t2)dt1dt2 +
∫
K

∫
J

f(t1)f(t2)dt1dt2

=
∫
J

∫
K

2f(t1)f(t2)dt1dt2.

Since δ is arbitrary, we deduce that the joint density of (T(1), T(2)) at (t1, t2) is 2f(t1)f(t2)

whenever t1 < t2. The joint density is zero if t1 > t2 since T(1) ≤ T(2) by definition.

Lemma 2 (Change of variables formula). Let (X1, X2) be a random vector with the joint

density function f(x1, x2), and ψ : R2 → R2 be a one-to-one map. Define a random vector

(Y1, Y2) by
(X1, X2) = ψ(Y1, Y2),

or equivalently (Y1, Y2) = ψ−1(X1, X2). Then the density function g(y1, y2) of (Y1, Y2) is

g(y1, y2) = f(ψ(y1, y2))
∣∣∣∣∂(x1, x2)
∂(y1, y2)

∣∣∣∣ ,
where | · | denotes the determinant and

∂(x1, x2)
∂(y1, y2)

=
(
∂x1/∂y1 ∂x1/∂y2
∂x2/∂y1 ∂x2/∂y2

)
.
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Proof. For any subset A ⊂ R2, we have

P ((Y1, Y2) ∈ A) = P ((X1, X2) ∈ ψ(A))

=
∫
ψ(A)

f(x1, x2)dx1dx2

=
∫
A

f(ψ(y1, y2))
∣∣∣∣∂(x1, x2)
∂(y1, y2)

∣∣∣∣ dy1dy2
by the change of variables formula for integration. This implies the result.

3 The solution for N = 2 case

By Lemma 1, the joint density function of (T(1), T(2)) is

fT(1),T(2)(t1, t2) = 2f(t1)f(t2)

= 2α2e−αt1e−αt2

if t1 < t2, and 0 otherwise.

Next we derive the joint density function g(u1, u2) of U1 = T(1) and U2 = T(2) − T(1) by

using Lemma 2. As we can write

T(1) = U1, T(2) = U1 + U2,

we define the map ψ by
(t1, t2) = ψ(u1, u2) = (u1, u1 + u2).

The Jacobian is ∣∣∣∣ ∂(t1, t2)
∂(u1, u2)

∣∣∣∣ =
∣∣∣∣(1 0

1 1

)∣∣∣∣ = 1.

Thus we obtain

g(u1, u2) = fT(1),T(2)(u1, u1 + u2)

= 2α2e−αu1e−α(u1+u2)

= (2αe−2αu1)(αe−αu2)

if u1, u2 > 0, and g(u1, u2) = 0 otherwise. This implies that U1 and U2 are independent, and

their marginal density functions are

g1(u1) = 2αe−2αu1 and g2(u2) = αe−αu1 ,

respectively, since
∫ ∞
0
gi(ui)dui = 1 for i = 1, 2. Finally, we have

P (U1 > t) =
∫ ∞

t

2αe−2αu1du1 = e−2αt, P (U2 > t) =
∫ ∞

t

αe−αu2du2 = e−αt.
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4 Remark

The distribution of U1 is easy to obtain:

P (U1 > t) = P (T(1) > t)

= P (min(T1, T2) > t)

= P (T1 > t, T2 > t)

= P (T1 > t)P (T2 > t) (by independence)

= e−αte−αt

= e−2αt.

This method was not mentioned in the lecture.

We obtain the conditional distribution of U2 given U1 in a similar way. However, it needs a

careful treatment on conditional probability and is omitted here.

The rest is about the solution for general N . It is not necessary to understand completely.

Don’t be afraid!

5 The problem (for general N)

Let T1, . . . , TN be independent random variables with

P (Tn > t) = e−αt, t ≥ 0, (2)

for some α > 0. Define U1, . . . , UN by

U1 = T(1), Un = T(n) − T(n−1), n ≥ 2,

where T(n) denotes the n-th smallest value in T1, . . . , TN . The random variables T(1), . . . , T(N)

are sometimes called the order statistics of T1, . . . , TN .

The problem is to show that U1, . . . , UN are independent and that

P (Un > t) = e−(N−n+1)αt

for n = 1, . . . , N .
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6 Solution (for general N)

The joint density function f(t1, . . . , tN ) of T1, . . . , TN is, by independence,

f(t1, . . . , tN ) =
N∏
n=1

f(tn)

=
N∏
n=1

αe−αtn .

We use the following two lemmas as in the N = 2 case. The proof is similar and omitted.

Lemma 3. Let T1, . . . , TN be independent and identically distributed random variables with

a density function f(t). Then the joint density function of the order statistics T(1), . . . , T(N)

is given by*2

fT(1),...,T(N)(t1, . . . , tN ) =
{
N !

∏N
n=1 f(tn) if t1 < t2 < · · · < tN ,

0 otherwise.

Lemma 4. Let X = (X1, . . . , XN ) be a random vector with the joint density function f(x),

and ψ : RN → RN be a one-to-one map. Define a random vector Y = (Y1, . . . , YN ) by

X = ψ(Y ).

Then the joint density function g(y) of Y is

g(y) = f(ψ(y))
∣∣∣∣∂x

∂y

∣∣∣∣ .
By Lemma 3, the joint density of T(n)’s in our problem is

fT(1),...,T(N)(t1, . . . , tN ) = N !
N∏
n=1

f(tn)

= N !
N∏
n=1

αe−αtn

if t1 < · · · < tN , and 0 otherwise.

Next we derive the joint density function g(u1, . . . , uN ) of Un’s by using Lemma 4. As we

can write

T(n) =
n∑
k=1

Uk,

*2 The factorial N ! comes from the number of permutations of N distinct real numbers.
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we define the map ψ : RN → RN by

ψ(u1, . . . , uN ) = (u1, u1 + u2, . . . , u1 + · · · + uN ).

The Jacobian determinant is shown to be 1. Therefore

g(u1, . . . , uN ) = fT(1),...,T(n)(u1, u1 + u2, . . . , u1 + · · · + uN )

= N !
N∏
k=1

αe−α
Pk

i=1 ui

= N !
N∏
n=1

αe−(N+1−n)αun

=
N∏
n=1

(N + 1 − n)αe−(N+1−n)αun (3)

if u1, . . . , uN > 0, and g(u1, . . . , uN ) = 0 otherwise. The reason why the factorial N ! is shared

as Equation (3) is to make each factor a density function. Equation (3) shows that U1, . . . , UN

are independent, and the density function of Un for each n is

(N + 1 − n)αe−α(N+1−n)un .

Finally, we have

P (Un > t) =
∫ ∞

t

(N + 1 − n)αe−(N+1−n)αundun

= e−(N+1−n)αt

for each n.
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