A supplementary material for the lecture

Tomonari SEI

Apr 13, 2017

1 A problem mentioned in the lecture and its solution

Problem 1. There are N students in the class. Each student tossed a coin repeatedly until the tail appears. For the *i*-th student $(1 \le i \le N)$, let T_i be the number of consecutive heads. In other words,

$$T_i = \max\{t \mid X_i(s) = 1, \ 1 \le s \le t\}$$

where $X_i(s)$ denotes the result of the coin toss: $X_i(s) = 1$ if the s-th outcome was head and 0 if it was tail. Let N(t) be the number of students still alive at time t, that is,

$$N(t) = \sharp\{i \mid T_i \ge t\}.$$

Define the random variable R by

$$R = \max\{t \mid N(t) > 0\}.$$

Then find the probability mass function of R.

Answer. By definition, we have

$$R = \max(T_1, \dots, T_N). \tag{1}$$

Indeed, R = r for $r \in \mathbb{Z}_+$ means N(r) > 0 and N(r+1) = 0, which is equivalent to $\max(T_1, \ldots, T_N) = r$. Then, by independence of T_i 's, we have

$$P(R \le r) = P(T_1 \le r, \dots, T_N \le r)$$

= $\prod_{i=1}^{N} P(T_i \le r)$
= $(1 - (1/2)^{r+1})^N$,

where the last equality follows from

$$P(T_i \le r) = 1 - P(T_i \ge r+1)$$

= 1 - P(X_i(1) = \dots = X_i(r+1) = 1)
= 1 - (1/2)^{r+1} (geometric distribution).

We finally obtain

$$P(R = r) = P(R \le r) - P(R \le r - 1)$$

= {1 - (1/2)^{r+1}}^N - {1 - (1/2)^r}^N

Note that the probability of R = 0 is $(1/2)^N$ as you can easily check.

The problem above was essentially to obtain the distribution of maximum of random variables. See Eq. (1).

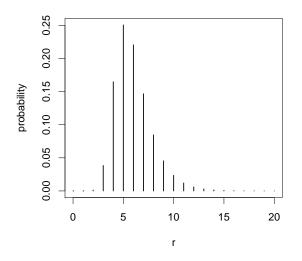
In the lecture, the result^{*1} of the experiment was R = 6 with N = 50. The upper probability is

$$P(R \ge 6) = 1 - (1 - 1/64)^{50}$$

= 0.5450.

One may deduce that R = 6 is not a surprising result.

The following figure shows the probability mass function (histogram) of R.



It is natural to ask the following problems.

 $^{^{\}ast 1}$ I cannot remember exactly. Was it R=7?

Problem 2. The coin is now changed so that $P(X_i = 1) = p$ and $P(X_i = 0) = q = 1 - p$. Then find the probability mass function of R.

Answer. The mass function is similarly obtained as Problem 1. The result is

$$P(R = r) = (1 - p^{r+1})^N - (1 - p^r)^N.$$

since $P(T_i \ge r+1) = p^{r+1}$.

Problem 3. What happens if $N \to \infty$?

Answer. For simplicity, consider the case p = 1/2 again. We focus on

$$P(R < r) = (1 - (1/2)^r)^N$$
.

It will be of interest to find r such that $(1 - (1/2)^r)^N$ does not degenerate as $N \to \infty$. This will be the case if $(1/2)^r = O(1/N)$. So we put $r = (x + \log N)/\log 2$, which is equivalent to $(1/2)^r = e^{-x}/N$. Then we have

$$P(R < (x + \log N) / \log 2) = \left(1 - \frac{e^{-x}}{N}\right)^{N}$$
$$\simeq e^{-e^{-x}}.$$

The function $F(x) = e^{-e^{-x}}$ is actually a cumulative distribution since

$$\frac{dF(x)}{dx} = e^{-x}e^{-e^{-x}} > 0,$$

 $F(-\infty) = e^{-\infty} = 0$, and $F(\infty) = e^0 = 1$. Here we allowed x takes any real numbers although it should take discrete values since $x = (\log 2)r - \log N$. The distribution F(x) is known as the Gumbel distribution, one of the generalized extreme value distributions.