
Hints for solving recommended problems

Tomonari SEI

April 27, 2017

In this note, we first show that the Monte Carlo method is a quite powerful tool for checking

your answer numerically. We deal with two problems for that purpose. Then we provide hints

(or answers) for difficult problems.

Denote, for example, Problem 22 of Section 1.8 of PRP*1 by Problem 1.8.22.

1 Use of the Monte Carlo method

Problem 1.8.22

■The problem A bowl contains twenty cherries, exactly fifteen of which have had their stones

removed. A greedy pig eats five whole cherries, picked at random, without remarking on the

presence or absence of stones. Subsequently, a cherry is picked randomly from the remaining

fifteen.

(a) What is the probability that this cherry contains a stone?

(b) Given that this cherry contains a stone, what is the probability that the pig consumed

at least one stone.

■Answer The following two procedures cause the same probability distribution:

(i) The pig eats five cherries randomly, and then a cherry is picked randomly from the

remaining 15 cherries.

(ii) A cherry is picked randomly, and then pig eats five cherries randomly from the remaining

19 cherries.

If you are skeptic about equivalence of (i) and (ii), please refer to Remark 1 below.

*1 G. Grimmett and D. Stirzaker, Probability and Random Processes, 3rd ed., Oxford University Press,

2001.
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(a) According to the procedure (ii), the probability we want is obviously

5
20

= 0.25.

(b) According to the procedure (ii), the probability that the pig consumed no stone given

the condition is (
4
0

)(
15
5

)(
19
5

) =
1001
3876

.

Therefore the probability that the pig consumed at least one stone is

1 − 1001
3876

=
2875
3876

= 0.7417 · · · .

■Checking by Monte Carlo The Monte Carlo method computes an approximate value of E[X]

for a given random variable X. The algorithm is described as follows:

• Generate random numbers X1, . . . , XN having the same distribution as X.

• Then compute (1/N)
∑N

i=1 Xi.

Very easy!

In our problem, the targets is the probability

P (Y = 1) = E[I{Y =1}]

for (a), and the conditional probability

P (X > 0 | Y = 1) =
P (X > 0, Y = 1)

P (Y = 1)
=

E[I{X>0,Y =1}]
E[I{Y =1}]

for (b), where X and Y are the number of cherries eaten by pig and picked, respectively.

Here is an R code for checking our answer to the problem. If you are not familiar with R

language, just read the comments after the symbol “#”.

R code for checking Problem 1-8-22� �
N = 1e4 # number of experiments

Xs = numeric(N) # vector of length N

Ys = numeric(N)

for(i in 1:N){

P = sample(20, 5) # "the pig randomly eats five cherries"

Xs[i] = sum(P <= 5) # the number of eaten cherries with stones.

Q = sample((1:20)[-P], 1) # "a cherry is picked randomly"

Ys[i] = sum(Q <= 5) # 1 if this cherry contains a stone, and 0 otherwise

}

A = mean(Ys) # answer to (a)

B = mean((Xs > 0) & Ys) / mean(Ys) # answer to (b)� �
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The result was (a) 0.2548 and (b) 0.7296, which depend on the random seed. The values are

close to our answer (a) 0.25 and (b) 0.7417. If you take larger N , you will get closer values.

It is also available to estimate the error. See Remark 2 below.

■Remark 1: equivalence of the procedures (i) and (ii) In general, suppose that there are N

cherries in the bowl, exactly n of which have stones. The pig eats p cherries and then q cherries

are picked randomly from the remaining. Let X be the number of eaten ones with stones, and

Y be the number of picked ones with stones. Then we have

P (X = x) =

(
n
x

)(
N−n
p−x

)(
N
p

) , P (Y = y | X = x) =

(
n−x

y

)(
(N−n)−(p−x)

q−y

)(
N−p

q

) .

They are the hypergeometric distributions. Now their joint distribution is

P (X = x, Y = y) = P (X = x)P (Y = y | X = x)

=

(
n
x

)(
N−n
p−x

)(
N
p

) ·
(
n−x

y

)(
(N−n)−(p−x)

q−y

)(
N−p

q

)
In order to show that the procedures (i) and (ii) are equivalent, it is enough to see that

P (X = x, Y = y) is symmetric with respect to exchange of the pairs (p, x) and (q, y). Indeed,

P (X = x, Y = y) =

(
n
x

)(
n−x

y

)
·
(
N−n
p−x

)(
(N−n)−(p−x)

q−y

)(
N
p

)(
N−p

q

)
=

n!
x!y!(n−x−y)! ·

(N−n)!
(p−x)!(q−y)!(N−n−(p−x)−(q−y))!

N !
p!q!(N−p−q)!

,

which is symmetric. Furthermore, the denominator denotes the number of ways to choose p

and q elements from N elements, and so on.

The joint distribution is also called the (multivariate) hypergeometric distribution. The

following contingency table would be helpful.

Table1 Contingency table

with stones without stones total

eaten by pig x p − x p

picked y q − y q

rest n − x − y (N − n) − (p − x) − (q − y) N − p − q

total n N − n N
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■Remark 2: Standard error of the Monte Carlo estimate In the above implementation of Monte

Carlo, we have not calculated the standard error, which refers to “an estimate of the standard

deviation of the Monte Carlo estimate”. As we shall see, the standard error is also obtained

with a little effort!

Let X̄ = (1/N)
∑N

i=1 Xi be the Monte Carlo estimator. The standard deviation of X̄ is

given by √
Var[X̄] =

√
1
N

Var[X1].

The variance Var[X1] is estimated by the sample variance

V̂ =
1
N

N∑
i=1

(Xi − X̄)2.

Therefore we obtain

(standard error of X̄) =

√
1
N

V̂ .

Let’s check in our problem. Part (a) is straightforward:

Compute the standard error (a)� �
A.se = sqrt(var(Ys) / N)� �

The result was 0.0044. Thus the Monte Carlo estimate for (a) is expressed by a confidence

interval
0.2543 ± 0.0044.

The interval (fortunately) covers the true value 0.25, but this is not always the case. The

probability that the interval covers the true value is about 68%, which is the probability

P (|Z| < 1) for the standard normal random variable Z. If you want to make the probability

95%, take
0.2543 ± (1.96 × 0.0044).

Here 1.96 is the number z such that P (|Z| < z) = 0.95. Anyway, the standard error gives us

an ancillary information about the Monte Carlo estimate.

Part (b) is more challenging since we have to evaluate the error of X̄/Ȳ as an estimate

of E[X]/E[Y ] for some random variables X and Y . This is evaluated by so-called the Delta

method. Define random variables UX and UY by X̄ = E[X] + UX and Ȳ = E[Y ] + UY ,
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respectively. Since UX and UY are of O(1/
√

N), we have

X̄

Ȳ
=

E[X] + UX

E[Y ] + UY

=
E[X]
E[Y ]

+
UX

E[Y ]
− E[X]UY

E[Y ]2
+ O(N−1)

by Taylor expansion. Therefore we have

Var
[
X̄

Ȳ

]
' Var

[
UX

E[Y ]
− E[X]UY

E[Y ]2

]
= Var

[
X̄

E[Y ]
− E[X]Ȳ

E[Y ]2

]
=

1
N

Var
[

X

E[Y ]
− E[X]Y

E[Y ]2

]
Now we obtain

(standard error of X̄/Ȳ ) =

√
1
N

Ŵ , where Ŵ =
1
N

N∑
i=1

(
Xi

Ȳ
− X̄Yi

Ȳ 2

)2

.

Let’s check.

Compute the standard error (b)� �
Zs = (Xs > 0) & Ys

Ybar = mean(Ys)

Zbar = mean(Zs)

B.se = sqrt(var(Zs / Ybar - (Zbar/Ybar/Ybar) * Ys) / N)� �
The result was 0.0088. Thus the Monte Carlo estimate for (b) is expressed by the 95%

confidence interval
0.7296 ± (1.96 × 0.0088).

The interval covers the true value 0.7417.

Problem 3.11.32

■The problem N + 1 plates are laid out around a circular dining table, and a hot cake is

passed between them in the manner of a symmetric random walk: each time it arrives on a

plate, it is tossed to one of the two neighbouring plates, each possibility having probability

1/2. The game stops at the moment when the cake has visited every plate at least once. Show

that, with the exception of the plate where the cake began, each plate has probability 1/N of

being the last plate visited by the cake.
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■Answer Focus on the k-th plate 1 ≤ k ≤ N . Let T ≥ 0 be the time when the hot cake

first arrives at either one of the neighbour of the k-th, where we interpret T = 0 if k = 1 or

k = N . Note that T is finite with probability one (due to the absorbing probability). After

the time T , by the Markov property and circular symmetry, the problem is reduced to the

case of k = 1. In other words, the probability that the k-th plate is the last plate has to be

common in all k. Therefore the probability is 1/N .

■Checking by Monte Carlo Here is an R code for checking the answer. If you are not familiar

with R language, just read the comments after the symbol #.

R code for checking Problem 3-11-32� �
LOOP = 1e4 # number of experiments

n = 7 # number of plates (except for the starting point)

freq = numeric(n)

for(Li in 1:LOOP){

fill = logical(n)

k = 0 # initial plate

while(any(!fill)){

x = sample(c(-1,1), 1) # left or right

k = (k + x) %% (n + 1) # mod n+1

if(k > 0) fill[k] = TRUE # arrived at k

}

freq[k] = freq[k] + 1 # the last plate was k

}

p = freq / LOOP # Monte Carlo estimate

p.sd = sqrt(p * (1-p) / LOOP) # standard error

for(j in 1:n){

cat(j, ":", p[j], "+-", p.sd[j], "\n")

}

cat("true:", 1 / n, "\n")� �
The output when N = 7 is

1 : 0.147 +- 0.003541059

2 : 0.1446 +- 0.003516971

3 : 0.1407 +- 0.003477118

4 : 0.1434 +- 0.003504803

5 : 0.1449 +- 0.00352

6 : 0.1418 +- 0.003488449

7 : 0.1376 +- 0.003444797

true: 0.1428571
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2 Hints (or answers) for difficult problems

Problem 1.8.28

Note: In the problem, S should denote the sphere.

■Hint Set a cube C randomly such that all its vertices are on the surface. Let Ai (i = 1, . . . , 8)

be the event that the i-th vertex of C is red. It is enough to show that P (A1 ∩ · · · ∩ A8) > 0

since then we can deduce that A1 ∩ · · · ∩ A8 6= ∅.

Problem 2.7.12

■Hint First try a simpler problem, that is, two coins rather than two dices.

■Answer Let a1, . . . , a6 be the probability that the first dice takes each value, and let

b1, . . . , b6 be those for the second dice. The assumption that the sum of two numbers shown

is equally likely is described as∑
i

aibk−i =
1
11

, 2 ≤ k ≤ 12,

where i runs over the set {i | 1 ≤ i ≤ 6, 1 ≤ k − i ≤ 6}. In particular, we have

a1b1 =
1
11

, a6b6 =
1
11

, a1b6 + · · · + a6b1 =
1
11

corresponding to k = 2, 12, 7. The first two equations imply b1 = 1/(11a1) and b6 = 1/(11a6).

Then the last equation is
a1

11a6
+ · · · + a6

11a1
=

1
11

.

But this is impossible since

a1

11a6
+

a6

11a1
≥ 2
√

a1

11a6
· a6

11a1
=

2
11

.

Problem 2.7.13

Note: In the problem, the original statement P (X = Y ) = 1 seems a mistake because there

is no information here about joint distribution of X and Y .

■Hint For (a), first take arbitrary distributions F and G you like, and draw the graphs of

F (x), G(x − ε) − ε and G(x + ε) + ε as functions of x. After that, think logically. Part (b) is

straightforward except for the last equality. For the last equality, prove the identity

|P (X ∈ A) − P (Y ∈ A)| = |P (X /∈ A) − P (Y /∈ A)|.
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■Answer (a) (i) Non-negativity dL(F, G) ≥ 0 is obvious from the definition. Symmetry

dL(F,G) = dL(G,F ) follows from the equivalence

G(x − ε) − ε ≤ F (x) ≤ G(x + ε) + ε for all x

⇐⇒ F (x − ε) − ε ≤ G(x) ≤ F (x + ε) + ε for all x

(ii) First assume F = G. Then F (x) = G(x) for all x. For any ε > 0, we have

F (x − ε) − ε < F (x) < F (x + ε) + ε

since F is nondecreasing. This implies dL(F, F ) = 0. Conversely, suppose dL(F, G) = 0. This

means
G(x − ε) − ε ≤ F (x) ≤ G(x + ε) + ε (∗)

for any ε. By taking the limit as ε ↓ 0, we have

F (x) ≤ G(x),

where the right continuity of G is used. By symmetry shown in (i), we also obtain

G(x) ≤ F (x).

Therefore F (x) = G(x) for all x.

(iii) Let F,G, H be distribution functions. Choose a > dL(F,G) and b > dL(G, H). Then, by

definition, we have

G(x − a) − a ≤ F (x) ≤ G(x + a) + a, H(x − b) − b ≤ G(x) ≤ H(x + b) + b

for all x. The two inequalities imply

H(x − a − b) − (a + b) ≤ F (x) ≤ H(x + a + b) + (a + b)

for all x. Thus dL(F, H) ≤ a + b. By choosing a and b arbitrarily close to dL(F, G) and

dL(G, H), respectively, we obtain dL(F, H) ≤ dL(F, G) + dL(G,H).

(b) (i) to (iii) are “clear” (= check by yourself). For the last equality, we note that for any

A ⊂ Z,

dTV(X, Y ) =
∑
x∈A

|P (X = x) − P (Y = x)| +
∑
x/∈A

|P (X = x) − P (Y = x)|

≥

∣∣∣∣∣∑
x∈A

{P (X = x) − P (Y = x)}

∣∣∣∣∣+
∣∣∣∣∣∑
x/∈A

{P (X = x) − P (Y = x)}

∣∣∣∣∣
= |P (X ∈ A) − P (Y ∈ A)| + |P (X /∈ A) − P (Y /∈ A)|
= |P (X ∈ A) − P (Y ∈ A)| + |{1 − P (X ∈ A)} − {1 − P (Y ∈ A)}|
= 2 |P (X ∈ A) − P (Y ∈ A)| .
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The equality holds if we put A = {x : P (X = x) > P (Y = x)}. Thus we obtain the desired

result:
dTV(X, Y ) = 2 sup

A⊂Z
|P (X ∈ A) − P (Y ∈ A)| .

Problem 3.11.33

■Hint Derive a recurrence formula rj =
∑j−1

k=1(j−1)−1(1+rk) and solve it. The asymptotic

expression may use Stirling’s formula.

■Answer Consider the case that you are at the jth best and the next step is the kth best

for a fixed 1 ≤ k ≤ j − 1. This event occurs with probability 1/(j − 1). After the one step,

you are at the kth best, and therefore the expected number of remaining steps you need is rk.

This explains a recurrence formula

rj =
j−1∑
k=1

(j − 1)−1(1 + rk).

The initial condition is r1 = 0 by definition. Multiply j − 1 to obtain

(j − 1)rj =
j−1∑
k=1

(1 + rk).

Taking difference with respect to j, we have

jrj+1 − (j − 1)rj = 1 + rj ,

or rj+1 = rj + 1/j. Now it is easy to see

rj =
1

j − 1
+ rj−1 =

j−1∑
k=1

1
k

+ r1 =
j−1∑
k=1

1
k

.

The expected time to reach B from the worst vertex is

r(n
m) =

(n
m)−1∑
k=1

1
k

� log
(

n

m

)
= log

n!
m!(n − m)!

� n log n (by Stirling’s formula)

as long as m � n, where an � bn means an/bn and bn/an are bounded.

■Remark Note that the expected time is much smaller than “the worst time”
(

n
m

)
− 1.

9



Problem 3.11.34

■Hint Let fn be the probability that m1 remains isolated. Try to obtain a recurrence

equation

fn =
1

n − 1

n−1∑
k=1

fk−1, n ≥ 2,

with f0 = 0 and f1 = 1. Solve this equation using generating functions, if necessary.

■Answer Let fn be the probability that m1 remains isolated. Consider the case that k-th pair

of neighbours combined to form a stable dimer. This event occurs with probability 1/(n− 1).

After that, the problem is reduced to that for n = k − 1 because kth molecule is combined

with (k + 1)th molecule and the first (k − 1) molecules remain unstable. Now we obtain the

recursive formula

fn =
1

n − 1

n−1∑
k=1

fk−1, n ≥ 2,

with the initial condition f0 = 0 and f1 = 1. We solve this equation.

Multiply n − 1 and replace k with k + 1 to obtain

(n − 1)fn =
n−2∑
k=0

fk, n ≥ 2.

Denote the generating function by F (s) =
∑∞

n=0 fnsn. Since
∑∞

n=0 nfnsn = sF ′(s) by term-

by-term differentiation and
∑∞

n=0(
∑n

k=0 fk)sn = F (s)/(1 − s) by convolution, we have

sF ′(s) − F (s) = s2 F (s)
1 − s

.

The initial condition is F (0) = 0 and F ′(0) = 1. The differential equation is solved as follows:

F ′(s) =
1
s

(
1 +

s2

1 − s

)
F (s),

⇐⇒ F ′(s)
F (s)

=
1
s

+
s

1 − s
= −1 +

1
s

+
1

1 − s
,

⇐⇒ log F (s) = C − s + log |s| − log |1 − s|, C: arbitrary constant,

⇐⇒ F (s) =
Cse−s

1 − s
, C: arbitrary constant,

By the initial condition, we obtain

F (s) =
se−s

1 − s
.
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Finally, expand F (s) as

F (s) = s
∑
k≥0

sk
∑
l≥0

(−s)l

l!

=
∞∑

n=1

(
n−1∑
l=0

(−1)l

l!

)
sn.

Now we obtain fn =
∑n−1

k=0(−1)k/k!. Taylor’s expansion implies fn → e−1 as n → ∞.

For the second part of the problem, let gn = E[Un]. As the first part, we obtain a recurrence

formula

gn =
1

n − 1

n−1∑
k=1

(gk−1 + gn−k−1).

Indeed, if the kth pair of neighbours combined first, then (k − 1) consecutive molecules are

unstable on the left and (n − k − 1) consecutive molecules are unstable on the right. The

equation is rewritten as

(n − 1)gn = 2
n−2∑
k=0

gk.

We also have the initial condition g0 = 0 and g1 = 1 from the definition. Solve this equation

as above. Let G(s) =
∑∞

n=0 gnsn. Then

sG′(s) − G(s) =
2s2G(s)
1 − s

⇐⇒ G′(s)
G(s)

=
1
s

(
1 +

2s2

1 − s

)
=

1
s

+
2s

1 − s
= −2 +

1
s

+
2

1 − s

⇐⇒ log G(s) = C − 2s + log |s| − 2 log |1 − s|

⇐⇒ G(s) =
Cse−2s

(1 − s)2
.

The initial condition implies

G(s) =
se−2s

(1 − s)2
.

Expand to obtain

G(s) = s

∞∑
k=1

ksk−1
∞∑

l=0

(−2s)l

l!
=

∞∑
n=1

n−1∑
l=0

(n − l)(−2)l

l!
sn.

Finally, we have

gn =
n−1∑
k=0

(n − k)(−2)k

k!
,

and therefore
gn

n
=

n−1∑
k=0

(−2)k

k!
− 1

n

n−1∑
k=1

(−2)k

(k − 1)!
→ e−2

as n → ∞.
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Problem 3.9.1

■Hint The probability that the random walk is absorbed at 0 before N is given by

pk =
pn−Kqk − qN

pN − qN

(see p.74 of PRP). By using symmetry, derive the probability that the walk is absorbed at N

before 0. Take their sum to prove P (T < ∞) = 1.

Next show that P (T > N | S0 = k) ≤ 1 − qN for any 0 ≤ k ≤ N . Then by induction, one

can show that
P (T > mN | S0 = k) ≤ (1 − qN )m

for all m ≥ 1. This means the tail probability of T decays exponentially.

Note: There may be more elegant solutions. Please let me know if you find them.

Problem 3.9.2

■Hint The first claim ppk+1/pk is obtained by the definition of the conditional probability.

Denote the duration time by T , which is a random variable. By the Markov property, you

may obtain

E[T | W,S0 = k] = P (S1 = k + 1 | W,S0 = k)(1 + E[T | W,S0 = k + 1])

+ P (S1 = k − 1 | W,S0 = k)(1 + E[T | W,S0 = k − 1]).

Then the recurrence equation will follow.

If p = 1
2 , we have pk = 1 − k

N (p.74 of PRP). You can show that αk := pkJk satisfies

αk = (1 − k/N) +
1
2
(αk+1 + αk−1)

with the boundary conditions α0 = αN = 0. Solve the equation by putting αk = c0 + c1k +

c2k
2+c3k

3 for some constants c0, c1, c2, c3; or by using generating functions. The final solution

will be Jk = (2Nk)/3 − k2/3.

Problem 3.11.32

→ see p.5 of this document.

Problem 5.3.3

■Hint You may show that

pAA(2n) =
n∑

k=0

(2n)!
(2k)!(2n − 2k)!

α2kβ2n−2k,
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where 2k denotes the number of A-B or C-D steps in the 2n steps, and 2n − 2k denotes the

number of A-C or B-D steps. Then prove

pAA(2n) =
1
2
{(α + β)2n + (α − β)2n}.

Now the generating function GA(s) will be easily obtained. The generating function FA(s) of

the time of the first return to A is obtained by GA(s) = 1 + FA(s)GA(s). See Theorem 1 in

p.163 of PRP.

Problem 5.12.6

■Hint (a) Let (Zn,Wn) be the n-th step, which takes (1, 0), (−1, 0), (0, 1) or (0,−1) with

probability 1/4 each. Then Xn =
∑n

k=1 Zn and Yn =
∑n

k=1 Wn. Use the properties of

expectation.

(b) As the 1-dimensional case, the problem is reduce to calculate the generating function of

p0(2n), which is the probability that the walk is at 0 after 2n steps. Denoting the number of

upward steps by k, you will have

p0(2n) =
n∑

k=0

(2n)!
k!k!(n − k)!(n − k)!

(
1
4

)2n

.

Use an identity related to the hypergeometric distribution:
n∑

k=0

(
n
k

)(
n

n−k

)(
2n
n

) = 1,

where the summand of the left hand side is the probability that k red balls and n − k white

balls are drawn when n balls are randomly drawn from 2n balls consisting of n red balls and

n white balls. Finally use Stirling’s formula to evaluate the generating function.

Problem 5.12.10

■Hint Take it easy. To tell the truth, I have no answer to (b)–(d)... Let me know if you

could solve!

■Answer (a) Let T be the duration of the game. Let Xn = 1 if the winner of the (n − 1)-th

game also wins the n-th game, and Xn = 0 otherwise. We set X1 = 1 identically. Note that

Xn, n ≥ 2, are independent and P (Xn = 1) = 1
2 . Now T is represented by

T = min{n ≥ r − 1 | Xn = · · · = Xn−r+2 = 1}.

Classify the first consecutive wins to obtain

E[sT ] =
r−1∑
k=2

P (X2 = 1, . . . , Xk−1 = 1, Xk = 0)E[sk−1+T ] + P (X2 = · · · = Xr−1 = 1)sr−1,
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and therefore the generating function G(s) = E[sT ] satisfies

G(s) =
r−1∑
k=2

sk−1

2k−1
G(s) +

sr−1

2r−2
.

We obtain

G(s) =
sr−1/2r−2

1 −
∑r−1

k=2 sk−1/2k−1
=

sr−1(2 − s)
2r−1(1 − s) + sr−1

.

In particular,
G′(1) = 2r−1 − 1.

■Remark If r = 3, the game is the same as “Tomoe sen” in Sumo wrestling.

See https://ja.wikipedia.org/wiki/巴戦.
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