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Theory of Stochastic Processes

Lecture 9: Stationary processes

Tomonari SEI

June 15, 2017

1 Stationary processes

Consider a discrete-time process X = {Xn}∞n=−∞. The index set is sometimes restricted to

non-negative integers: {Xn}∞n=0.

Definition 1 (strong stationarity). A process X is said to be strongly stationary if the joint

distribution of Xn, . . . , Xn+m is the same as that of X0, . . . , Xm for all n and m.

Example 1 (Markov chain). Let X be a Markov chain with the transition matrix (pij) and a

stationary distribution (πi). If P (X0 = i) = πi, then X is strongly stationary.

Today we focus on the following weaker version of stationarity. Here the state space is

assumed to be R.

Definition 2 (weak stationarity). A process X is said to be weakly stationary if E[Xn] =

E[X0] and Cov[Xn, Xn+m] = Cov[X0, Xm] for all n and m. For a weakly stationary process

X, the autocovariance function is defined by

c(n) = Cov[X0, Xn], n ∈ Z.

The autocorrelation function (ACF) is defined by

ρ(n) =
Cov[X0, Xn]√
V [X0]V [Xn]

=
c(n)
c(0)

.

whenever c(0) > 0.

It is easy to see that ρ(0) = 1 and ρ(−n) = ρ(n) for all n. Note that the autocorrelation

function is the autocovariance function of Xn/
√

c(0).

Example 2 (white noise). Let {Zn} be a sequence of uncorrelated real-valued random variables

with zero means and unit variances. Any process with this property is called a white noise.
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The autocovariance function of a white noise is c(n) = δ0(n), Kronecker’s delta. See Figure 1.
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Figure1 A sample path (left) and the autocorrelation function (right) of the white noise.

Example 3 (autoregressive process). Let {Zn} be a white noise. Define a process {Xn} by

Xn = αXn−1 + σZn, n ∈ Z,

where α ∈ R and σ > 0. This process is called an autoregressive process of order 1 (AR(1)).

Suppose |α| < 1. If Xn is weakly stationary (and therefore E[X2
n] is bounded), we have

Xn = σ(Zn + αZn−1 + α2Zn−2 + · · · )

by induction, where the limit on the right hand side is interpreted in L2 sense*1. Then the

autocovariance function is c(n) = σ2α|n|/(1 − α2). See Figure 2. Note that Xm and Zn are

uncorrelated if m < n. This property is called causality. See Section 3 and Problem 1.
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Figure2 A sample path (left) and the autocorrelation function (right)of AR(1) with α = 0.85.

*1 We say that a sequence of random variables {Yn} converges to a random variable Y in L2 if E[|Yn−Y |2] →
0 as n → ∞.
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2 Spectral distribution

The following theorem is powerful. See Section 4 for a sketch of proof.

Theorem 1. For any autocovariance function c, there exists a unique finite measure F on

(−π, π] such that

c(n) =
∫ π

−π

eiλnF (dλ), n ∈ Z, i =
√
−1, (1)

and F is symmetric in the sense that F (A) = F (−A) for any subset of (0, π). If c is an

autocorrelation function (c(0) = 1), then F is a probability measure.

If you are not familiar with the notation
∫

eiλnF (dλ), just replace it with
∫

eiλnf(λ)dλ or∑
λ eiλnf(λ), in accordance with continuity or discreteness of F .

Definition 3 (spectral distribution). The distribution F satisfying (1) is called the spectral

distribution. If F has the density function f , then f is called the spectral density function.

Example 4. The spectral density of a white noise is f(λ) = 1/2π. Indeed,

1
2π

∫ π

−π

eiλndλ = δ0(n).

Example 5. Let

Xn = A cos(λ0n) + B sin(λ0n), n ∈ Z, (2)

where A and B are uncorrelated random variables with zero mean and unit variance, and

λ0 ∈ (0, π). The autocovariance function of Xn is c(h) = cos(λ0h), h ∈ Z, and therefore the

spectral distribution is a discrete measure (δλ0(dλ) + δ−λ0(dλ))/2.

Intuitively speaking, any weakly stationary process is a superposition of (2) for infinitely

many λ0’s. This is mathematically justified by spectral processes, but not discussed here*2.

Example 6. As we shall see in the following section, the spectral density function of AR(1)

process Xn = αXn−1 + σZn is given by

f(λ) =
σ2

2π

1
1 − 2α cos λ + α2

.

Figure 3 shows the spectral density when α = 0.85.

*2 See e.g. Section 9.4 of PRP.
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Figure3 Spectral representation of AR(1) with α = 0.85. The upper two figures are the

same as Figure 2. The lower two figures are the “Fourier transform” of them.

3 Causal processes

We give a broad class of weakly stationary processes. Let {Zn} be a white noise. Define a

lag operator L by Lan = an−1 for any sequence {an}. A causal process*3 {Xn} is defined by

Xn = g(L)Zn. (3)

where g(L) =
∑∞

m=0 gmLm, gm ∈ R. More precisely, Xn is the output of a causal system g(L)

when the input is a white noise. We put a technical assumption*4 that the convergence radius

of a power series g(z) =
∑

m gmzm is greater than 1.

Theorem 2. The spectral density function of (3) is given by

f(λ) =
1
2π

|g(eiλ)|2. (4)

*3 For further details, See e.g. Brockwell and Davis (1991), Time Series: Theory and Methods, Springer.
*4 The assumption implies that the right hand side of (3) is well-defined.
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Proof. The autocovariance function of Xn is

c(h) = E[X0Xh] =
X

m

X

n

gmgnE[Z−mZh−n]

=
1

2π

X

m

X

n

gmgn

Z π

−π

ei(h−n+m)λdλ

=
1

2π

Z π

−π

˛

˛

˛

˛

˛

X

m

gmeimλ

˛

˛

˛

˛

˛

2

eihλdλ.

Thus the spectral density is (4).

Example 7. The stationary AR(1) process Xn = αXn−1 + σZn is rewritten as

Xn = σ(1 − αL)−1Zn

if |α| < 1. Therefore its spectral density is

f(λ) =
1
2π

σ2

|1 − αeiλ|2
=

1
2π

σ2

1 − 2α cos λ + α2
.

4 Bochner’s theorem

This section may be skipped. We denote the complex conjugate of z ∈ C by z.

Definition 4 (non-negative definiteness). A complex-valued function ρ(n), n ∈ Z, is called

non-negative definite if
∑k

i=1

∑k
j=1 ρ(ni − nj)wiwj ≥ 0 for any k ≥ 1, n1, . . . , nk ∈ Z and

w1, . . . , wk ∈ C.

Lemma 1. Any autocovariance function is non-negative definite.

Proof.
P

i

P

j c(ni − nj)wiwj =
P

i

P

j E[XniXnj ]wiwj = E[|
P

i Xniwi|2] ≥ 0.

Lemma 2. If ρ is non-negative definite, then ρ(0) ≥ 0, |ρ(n)| ≤ ρ(0), and ρ(−n) = ρ(n).

Proof. Let k = 1, n1 = 0 and w1 = 1 in the definition of non-negative definiteness. Then

we have ρ(0) ≥ 0. Let k = 2, n1 = 0, n2 = n, w1 = 1 and w2 = α ∈ C. Then we have

(1 + |α|2)ρ(0) + αρ(n) + αρ(−n) ≥ 0. Take α =
√
−1 to obtain Re(ρ(n)) = Re(ρ(−n)) and

α = 1 to obtain Im(ρ(n)) = −Im(ρ(−n)). Let α = −ρ(n)/|ρ(n)| to obtain |ρ(n)| ≤ ρ(0).

Lemma 3. Suppose that ρ is non-negative definite. Let N be a positive integer and ρN (n) =

(1−|n|/N)+ρ(n), where a+ = max(a, 0). Let fN (λ) = (2π)−1
∑

n ρN (n)e−iλn. Then ρN (n) =∫ π

−π
eiλnfN (λ)dλ and fN (λ) ≥ 0.

Proof. It is easy to see that
R π

−π
eiλnfN (λ)dλ = (2π)−1 P

m ρN (m)
R π

−π
eiλ(n−m)dλ = ρN (n).

We also have fN (λ) = (2πN)−1 PN
j,k=1 ρ(j − k)e−i(j−k)λ ≥ 0 by non-negative definiteness.

Theorem 1 is a corollary of the following theorem.
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Theorem 3 (Bochner*5). A sequence {ρ(n)} is non-negative definite if and only if there exists

a finite measure F on (−π, π] such that

ρ(n) =
∫ π

−π

eiλnF (dλ). (5)

In that case, the distribution F is unique.

Proof. It is easy to show that the equation (5) implies non-negative definiteness:

X

i

X

j

ρ(ni − nj)wiwj =
X

i

X

j

Z π

−π

eiλ(ni−nj)F (dλ)wiwj =

Z π

−π

˛

˛

˛

˛

˛

X

i

eiλniwi

˛

˛

˛

˛

˛

2

F (dλ) ≥ 0.

The converse is more technical. We only give a sketch here. Let ρ be a non-negative definite

function and ρ(0) = 1 without loss of generality. For each positive integer N , define ρN and

fN as Lemma 3. Define FN (dλ) = fN (λ)dλ. It can be shown that the sequence {FN}∞N=1 is

tight*6 in the space of probability distributions and hence there exists a probability distribution

F such that a subsequence FNj converges to F in distribution. Then we have the relation (5)

as follows:

ρ(n) = lim
j→∞

ρNj (n) = lim
j→∞

Z π

−π

eiλnFNj (dλ) =

Z π

−π

eiλnF (dλ).

Finally, we prove the uniqueness of F . Suppose (5) holds. Define ρN and fN as above. It is

sufficient to prove an inversion formula

F ((a, b]) = lim
N→∞

Z b

a

fN (λ)dλ, (6)

whenever F ({a}) = F ({b}) = 0. By definition of fN and (5), we have

fN (λ) =

Z π

−π

N−1
X

n=−(N−1)

„

1 − |n|
N

«

ei(µ−λ)nF (dµ) =

Z π

−π

1

N

˛

˛

˛

˛

˛

N−1
X

n=0

ei(µ−λ)n

˛

˛

˛

˛

˛

2

| {z }

KN (µ−λ)

F (dµ).

Integrating both sides from λ = a to b, we obtain

Z b

a

fN (λ)dλ =

Z π

−π

„

Z b

a

KN (µ − λ)dλ

«

F (dµ).

The function KN converges to the “delta function”. More precisely, it is shown that

lim
N→∞

Z b

a

KN (µ − λ)dλ =



1 if µ ∈ (a, b),
0 if µ /∈ [a, b].

It is also shown that
R b

a
KN (µ − λ)dλ ≤

R π

−π
KN (µ − λ)dλ = 1 for all N . Now the formula (6)

follows from Lebesgue’s dominated convergence theorem.

*5 e.g. W. Feller (1971), An Introduction to Probability Theory and its Applications, Vol.2, 2nd ed., Wiley.
*6 For the definition of tightness and its implication, refer to any book on advanced probability theory, e.g.,

J. S. Rosenthal (2006), A first look at rigorous probability theory, 2nd ed., World Scientific.

6



Lecture 9: Stationary processes

5 Exercises

In the following, “stationary” refers to “weakly stationary”.

Problem 1 (Non-causal process). Let {Zn} be a white noise. Show that even if |α| > 1, there

exists a stationary process {Xn} such that Xn = αXn−1 + σZn, where Xn−1 and Zn are not

necessarily uncorrelated*7. [Hint: represent Xn−1 in terms of Xn and Zn.]

Problem 2. Let {Zn} be a white noise. Define a process X = {Xn} by

Xn =
p∑

j=1

αjXn−j + σZn,

where αj ∈ R and σ > 0. Suppose that all the roots of the equation 1 −
∑p

j=1 αjz
j = 0 with

respect to z ∈ C are outside the unit circle. This process is called an AR(p) process. Show

that the spectral density function of X is

f(λ) =
σ2

|1 −
∑p

j=1 αje−iλj |2
.

Problem 3. Let c(n) and d(n) be autocovariance functions.

(i) Show that c(n) + d(n) is also an autocovariance function.

(ii) Show that c(n)d(n) is also an autocovariance function.

[Hint: Consider processes Xn+Yn and XnYn, respectively, where Xn and Yn are independent.]

Problem 4. Let A,B, Ω be independent random variables. Assume that P (A = ±1) =

P (B = ±1) = 1/2, and Ω is uniformly distributed on (0, π). Define a process {Xn} by

Xn = A cos(Ωn) + B sin(Ωn).

(i) Show that {Xn} is a white noise.

(ii) Show that X−1, X0, X1 determine the whole process {Xn}∞n=−∞.

Problem 5. Let Xn be a circular stationary process in the sense that there exists N ≥ 1

such that the autocovariance function c satisfies c(n) = c(n+N) for all n. Show that a matrix

C = {c(j − k)}N
j,k=1 is non-negative definite. Use the spectral decomposition of C to obtain

the identity

c(n) =
N−1∑
m=0

e2πimn/Nf(m),

where f(m) = N−1
∑N−1

n=0 c(n)e−2πimn/N is non-negative.

*7 If we assume a priori that Xn−1 and Zn are uncorrelated, then there is no stationary solution Xn.
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Problem 6 (Effective sample size). Let {Xn}∞n=−∞ be a stationary process with E[Xn] = µ

and E[XmXn] = σ2ρ(m−n), where ρ is an autocorrelation function. Denote the sample mean

and sample variance of {Xn}N
n=1 by

X̄ =
1
N

N∑
n=1

Xn, σ̂2 =
1
N

N∑
n=1

(Xn − X̄)2.

(i) Show that E[X̄] = µ and V [X̄] = (σ2/N)
∑N−1

n=−(N−1)(1 − |n|/N)ρ(n).

(ii) Show that E[σ̂2] = σ2 − V [X̄].

(iii) Assume
∑∞

n=−∞ |ρ(n)| < ∞. Show that

lim
N→∞

NV [X̄] = σ2f(0), lim
N→∞

E[σ̂2] = σ2,

where f(0) =
∑∞

n=−∞ ρ(n) is the spectral density at frequency zero.

Remark: the quantity Neff = N/f(0) is called the effective sample size. If Neff is given, the

variance V [X̄] is estimated by σ̂2/Neff . This strategy is used in error estimate of MCMC*8

*8 e.g. the ‘coda’ package in R language. https://cran.r-project.org/web/packages/coda/coda.pdf
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