Theory of Stochastic Processes

Lecture 9: Stationary processes

Tomonari SEI

June 15, 2017

1 Stationary processes

Consider a discrete-time process $X = \{X_n\}_{n=-\infty}^{\infty}$. The index set is sometimes restricted to non-negative integers: $\{X_n\}_{n=0}^{\infty}$.

Definition 1 (strong stationarity). A process X is said to be *strongly stationary* if the joint distribution of X_n, \ldots, X_{n+m} is the same as that of X_0, \ldots, X_m for all n and m.

Example 1 (Markov chain). Let X be a Markov chain with the transition matrix (p_{ij}) and a stationary distribution (π_i) . If $P(X_0 = i) = \pi_i$, then X is strongly stationary.

Today we focus on the following weaker version of stationarity. Here the state space is assumed to be \mathbb{R} .

Definition 2 (weak stationarity). A process X is said to be *weakly stationary* if $E[X_n] = E[X_0]$ and $Cov[X_n, X_{n+m}] = Cov[X_0, X_m]$ for all n and m. For a weakly stationary process X, the *autocovariance function* is defined by

$$c(n) = \operatorname{Cov}[X_0, X_n], \quad n \in \mathbb{Z}.$$

The *autocorrelation function* (ACF) is defined by

$$\rho(n) = \frac{\text{Cov}[X_0, X_n]}{\sqrt{V[X_0]V[X_n]}} = \frac{c(n)}{c(0)}$$

whenever c(0) > 0.

It is easy to see that $\rho(0) = 1$ and $\rho(-n) = \rho(n)$ for all n. Note that the autocorrelation function is the autocovariance function of $X_n/\sqrt{c(0)}$.

Example 2 (white noise). Let $\{Z_n\}$ be a sequence of uncorrelated real-valued random variables with zero means and unit variances. Any process with this property is called *a white noise*. The autocovariance function of a white noise is $c(n) = \delta_0(n)$, Kronecker's delta. See Figure 1.

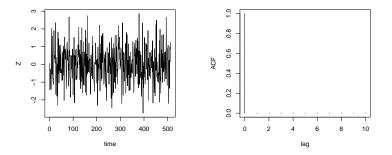


Figure1 A sample path (left) and the autocorrelation function (right) of the white noise.

Example 3 (autoregressive process). Let $\{Z_n\}$ be a white noise. Define a process $\{X_n\}$ by

$$X_n = \alpha X_{n-1} + \sigma Z_n, \quad n \in \mathbb{Z},$$

where $\alpha \in \mathbb{R}$ and $\sigma > 0$. This process is called an *autoregressive process* of order 1 (AR(1)). Suppose $|\alpha| < 1$. If X_n is weakly stationary (and therefore $E[X_n^2]$ is bounded), we have

$$X_n = \sigma(Z_n + \alpha Z_{n-1} + \alpha^2 Z_{n-2} + \cdots)$$

by induction, where the limit on the right hand side is interpreted in L^2 sense^{*1}. Then the autocovariance function is $c(n) = \sigma^2 \alpha^{|n|} / (1 - \alpha^2)$. See Figure 2. Note that X_m and Z_n are uncorrelated if m < n. This property is called *causality*. See Section 3 and Problem 1.

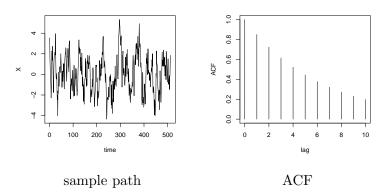


Figure 2 A sample path (left) and the autocorrelation function (right) of AR(1) with $\alpha = 0.85$.

^{*1} We say that a sequence of random variables $\{Y_n\}$ converges to a random variable Y in L^2 if $E[|Y_n - Y|^2] \rightarrow 0$ as $n \rightarrow \infty$.

2 Spectral distribution

The following theorem is powerful. See Section 4 for a sketch of proof.

Theorem 1. For any autocovariance function c, there exists a unique finite measure F on $(-\pi, \pi]$ such that

$$c(n) = \int_{-\pi}^{\pi} e^{i\lambda n} F(d\lambda), \quad n \in \mathbb{Z}, \quad i = \sqrt{-1},$$
(1)

and F is symmetric in the sense that F(A) = F(-A) for any subset of $(0, \pi)$. If c is an autocorrelation function (c(0) = 1), then F is a probability measure.

If you are not familiar with the notation $\int e^{i\lambda n} F(d\lambda)$, just replace it with $\int e^{i\lambda n} f(\lambda) d\lambda$ or $\sum_{\lambda} e^{i\lambda n} f(\lambda)$, in accordance with continuity or discreteness of F.

Definition 3 (spectral distribution). The distribution F satisfying (1) is called the *spectral distribution*. If F has the density function f, then f is called the *spectral density function*.

Example 4. The spectral density of a white noise is $f(\lambda) = 1/2\pi$. Indeed,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i\lambda n} d\lambda = \delta_0(n)$$

Example 5. Let

$$X_n = A\cos(\lambda_0 n) + B\sin(\lambda_0 n), \quad n \in \mathbb{Z},$$
(2)

where A and B are uncorrelated random variables with zero mean and unit variance, and $\lambda_0 \in (0, \pi)$. The autocovariance function of X_n is $c(h) = \cos(\lambda_0 h)$, $h \in \mathbb{Z}$, and therefore the spectral distribution is a discrete measure $(\delta_{\lambda_0}(d\lambda) + \delta_{-\lambda_0}(d\lambda))/2$.

Intuitively speaking, any weakly stationary process is a superposition of (2) for infinitely many λ_0 's. This is mathematically justified by *spectral processes*, but not discussed here^{*2}.

Example 6. As we shall see in the following section, the spectral density function of AR(1) process $X_n = \alpha X_{n-1} + \sigma Z_n$ is given by

$$f(\lambda) = \frac{\sigma^2}{2\pi} \frac{1}{1 - 2\alpha \cos \lambda + \alpha^2}$$

Figure 3 shows the spectral density when $\alpha = 0.85$.

 $^{^{*2}}$ See e.g. Section 9.4 of PRP.

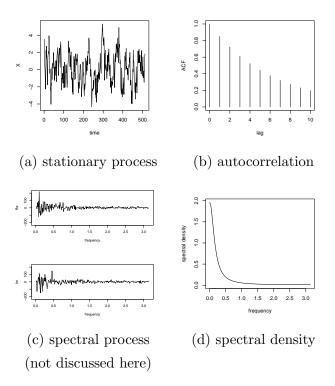


Figure 3 Spectral representation of AR(1) with $\alpha = 0.85$. The upper two figures are the same as Figure 2. The lower two figures are the "Fourier transform" of them.

3 Causal processes

We give a broad class of weakly stationary processes. Let $\{Z_n\}$ be a white noise. Define a lag operator L by $La_n = a_{n-1}$ for any sequence $\{a_n\}$. A causal process^{*3} $\{X_n\}$ is defined by

$$X_n = g(L)Z_n. (3)$$

where $g(L) = \sum_{m=0}^{\infty} g_m L^m$, $g_m \in \mathbb{R}$. More precisely, X_n is the output of a *causal system* g(L) when the input is a white noise. We put a technical assumption^{*4} that the convergence radius of a power series $g(z) = \sum_m g_m z^m$ is greater than 1.

Theorem 2. The spectral density function of (3) is given by

$$f(\lambda) = \frac{1}{2\pi} |g(e^{i\lambda})|^2.$$
(4)

^{*3} For further details, See e.g. Brockwell and Davis (1991), *Time Series: Theory and Methods*, Springer.

 $^{^{*4}}$ The assumption implies that the right hand side of (3) is well-defined.

Proof. The autocovariance function of X_n is

$$c(h) = E[X_0 X_h] = \sum_m \sum_n g_m g_n E[Z_{-m} Z_{h-n}]$$
$$= \frac{1}{2\pi} \sum_m \sum_n g_m g_n \int_{-\pi}^{\pi} e^{i(h-n+m)\lambda} d\lambda$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \sum_m g_m e^{im\lambda} \right|^2 e^{ih\lambda} d\lambda.$$

Thus the spectral density is (4).

Example 7. The stationary AR(1) process $X_n = \alpha X_{n-1} + \sigma Z_n$ is rewritten as

$$X_n = \sigma (1 - \alpha L)^{-1} Z_n$$

if $|\alpha| < 1$. Therefore its spectral density is

$$f(\lambda) = \frac{1}{2\pi} \frac{\sigma^2}{|1 - \alpha e^{i\lambda}|^2} = \frac{1}{2\pi} \frac{\sigma^2}{1 - 2\alpha \cos \lambda + \alpha^2}.$$

4 Bochner's theorem

This section may be skipped. We denote the complex conjugate of $z \in \mathbb{C}$ by \overline{z} .

Definition 4 (non-negative definiteness). A complex-valued function $\rho(n)$, $n \in \mathbb{Z}$, is called non-negative definite if $\sum_{i=1}^{k} \sum_{j=1}^{k} \rho(n_i - n_j) w_i \overline{w_j} \ge 0$ for any $k \ge 1, n_1, \ldots, n_k \in \mathbb{Z}$ and $w_1, \ldots, w_k \in \mathbb{C}$.

Lemma 1. Any autocovariance function is non-negative definite.

Proof.
$$\sum_i \sum_j c(n_i - n_j) w_i \overline{w_j} = \sum_i \sum_j E[X_{n_i} X_{n_j}] w_i \overline{w_j} = E[|\sum_i X_{n_i} w_i|^2] \ge 0.$$

Lemma 2. If ρ is non-negative definite, then $\rho(0) \ge 0$, $|\rho(n)| \le \rho(0)$, and $\rho(-n) = \overline{\rho(n)}$.

Proof. Let k = 1, $n_1 = 0$ and $w_1 = 1$ in the definition of non-negative definiteness. Then we have $\rho(0) \ge 0$. Let k = 2, $n_1 = 0$, $n_2 = n$, $w_1 = 1$ and $w_2 = \alpha \in \mathbb{C}$. Then we have $(1 + |\alpha|^2)\rho(0) + \alpha\rho(n) + \overline{\alpha}\rho(-n) \ge 0$. Take $\alpha = \sqrt{-1}$ to obtain $\operatorname{Re}(\rho(n)) = \operatorname{Re}(\rho(-n))$ and $\alpha = 1$ to obtain $\operatorname{Im}(\rho(n)) = -\operatorname{Im}(\rho(-n))$. Let $\alpha = -\overline{\rho(n)}/|\rho(n)|$ to obtain $|\rho(n)| \le \rho(0)$. \Box

Lemma 3. Suppose that ρ is non-negative definite. Let N be a positive integer and $\rho_N(n) = (1 - |n|/N)_+\rho(n)$, where $a_+ = \max(a, 0)$. Let $f_N(\lambda) = (2\pi)^{-1} \sum_n \rho_N(n) e^{-i\lambda n}$. Then $\rho_N(n) = \int_{-\pi}^{\pi} e^{i\lambda n} f_N(\lambda) d\lambda$ and $f_N(\lambda) \ge 0$.

Proof. It is easy to see that $\int_{-\pi}^{\pi} e^{i\lambda n} f_N(\lambda) d\lambda = (2\pi)^{-1} \sum_m \rho_N(m) \int_{-\pi}^{\pi} e^{i\lambda(n-m)} d\lambda = \rho_N(n)$. We also have $f_N(\lambda) = (2\pi N)^{-1} \sum_{j,k=1}^N \rho(j-k) e^{-i(j-k)\lambda} \ge 0$ by non-negative definiteness. \Box

Theorem 1 is a corollary of the following theorem.

Theorem 3 (Bochner^{*5}). A sequence $\{\rho(n)\}$ is non-negative definite if and only if there exists a finite measure F on $(-\pi, \pi]$ such that

$$\rho(n) = \int_{-\pi}^{\pi} e^{i\lambda n} F(d\lambda).$$
(5)

In that case, the distribution F is unique.

Proof. It is easy to show that the equation (5) implies non-negative definiteness:

$$\sum_{i} \sum_{j} \rho(n_i - n_j) w_i \overline{w_j} = \sum_{i} \sum_{j} \int_{-\pi}^{\pi} e^{i\lambda(n_i - n_j)} F(d\lambda) w_i \overline{w_j} = \int_{-\pi}^{\pi} \left| \sum_{i} e^{i\lambda n_i} w_i \right|^2 F(d\lambda) \ge 0.$$

The converse is more technical. We only give a sketch here. Let ρ be a non-negative definite function and $\rho(0) = 1$ without loss of generality. For each positive integer N, define ρ_N and f_N as Lemma 3. Define $F_N(d\lambda) = f_N(\lambda)d\lambda$. It can be shown that the sequence $\{F_N\}_{N=1}^{\infty}$ is tight^{*6} in the space of probability distributions and hence there exists a probability distribution F such that a subsequence F_{N_j} converges to F in distribution. Then we have the relation (5) as follows:

$$\rho(n) = \lim_{j \to \infty} \rho_{N_j}(n) = \lim_{j \to \infty} \int_{-\pi}^{\pi} e^{i\lambda n} F_{N_j}(d\lambda) = \int_{-\pi}^{\pi} e^{i\lambda n} F(d\lambda)$$

Finally, we prove the uniqueness of F. Suppose (5) holds. Define ρ_N and f_N as above. It is sufficient to prove an inversion formula

$$F((a,b]) = \lim_{N \to \infty} \int_{a}^{b} f_{N}(\lambda) d\lambda,$$
(6)

whenever $F(\{a\}) = F(\{b\}) = 0$. By definition of f_N and (5), we have

$$f_N(\lambda) = \int_{-\pi}^{\pi} \sum_{n=-(N-1)}^{N-1} \left(1 - \frac{|n|}{N}\right) e^{i(\mu-\lambda)n} F(d\mu) = \int_{-\pi}^{\pi} \underbrace{\frac{1}{N} \left|\sum_{n=0}^{N-1} e^{i(\mu-\lambda)n}\right|^2}_{K_N(\mu-\lambda)} F(d\mu).$$

Integrating both sides from $\lambda = a$ to b, we obtain

$$\int_{a}^{b} f_{N}(\lambda) d\lambda = \int_{-\pi}^{\pi} \left(\int_{a}^{b} K_{N}(\mu - \lambda) d\lambda \right) F(d\mu).$$

The function K_N converges to the "delta function". More precisely, it is shown that

$$\lim_{N \to \infty} \int_{a}^{b} K_{N}(\mu - \lambda) d\lambda = \begin{cases} 1 & \text{if } \mu \in (a, b), \\ 0 & \text{if } \mu \notin [a, b]. \end{cases}$$

It is also shown that $\int_{a}^{b} K_{N}(\mu - \lambda) d\lambda \leq \int_{-\pi}^{\pi} K_{N}(\mu - \lambda) d\lambda = 1$ for all N. Now the formula (6) follows from Lebesgue's dominated convergence theorem.

^{*&}lt;sup>5</sup> e.g. W. Feller (1971), An Introduction to Probability Theory and its Applications, Vol.2, 2nd ed., Wiley.
*⁶ For the definition of tightness and its implication, refer to any book on advanced probability theory, e.g.,

J. S. Rosenthal (2006), A first look at rigorous probability theory, 2nd ed., World Scientific.

5 Exercises

In the following, "stationary" refers to "weakly stationary".

Problem 1 (Non-causal process). Let $\{Z_n\}$ be a white noise. Show that even if $|\alpha| > 1$, there exists a stationary process $\{X_n\}$ such that $X_n = \alpha X_{n-1} + \sigma Z_n$, where X_{n-1} and Z_n are not necessarily uncorrelated^{*7}. [Hint: represent X_{n-1} in terms of X_n and Z_n .]

Problem 2. Let $\{Z_n\}$ be a white noise. Define a process $X = \{X_n\}$ by

$$X_n = \sum_{j=1}^p \alpha_j X_{n-j} + \sigma Z_n$$

where $\alpha_j \in \mathbb{R}$ and $\sigma > 0$. Suppose that all the roots of the equation $1 - \sum_{j=1}^{p} \alpha_j z^j = 0$ with respect to $z \in \mathbb{C}$ are outside the unit circle. This process is called an AR(p) process. Show that the spectral density function of X is

$$f(\lambda) = \frac{\sigma^2}{|1 - \sum_{j=1}^p \alpha_j e^{-i\lambda_j}|^2}$$

Problem 3. Let c(n) and d(n) be autocovariance functions.

- (i) Show that c(n) + d(n) is also an autocovariance function.
- (ii) Show that c(n)d(n) is also an autocovariance function.

[Hint: Consider processes $X_n + Y_n$ and $X_n Y_n$, respectively, where X_n and Y_n are independent.]

Problem 4. Let A, B, Ω be independent random variables. Assume that $P(A = \pm 1) = P(B = \pm 1) = 1/2$, and Ω is uniformly distributed on $(0, \pi)$. Define a process $\{X_n\}$ by

$$X_n = A\cos(\Omega n) + B\sin(\Omega n).$$

- (i) Show that $\{X_n\}$ is a white noise.
- (ii) Show that X_{-1}, X_0, X_1 determine the whole process $\{X_n\}_{n=-\infty}^{\infty}$.

Problem 5. Let X_n be a *circular* stationary process in the sense that there exists $N \ge 1$ such that the autocovariance function c satisfies c(n) = c(n+N) for all n. Show that a matrix $C = \{c(j-k)\}_{j,k=1}^N$ is non-negative definite. Use the spectral decomposition of C to obtain the identity

$$c(n) = \sum_{m=0}^{N-1} e^{2\pi i m n/N} f(m),$$

where $f(m) = N^{-1} \sum_{n=0}^{N-1} c(n) e^{-2\pi i m n/N}$ is non-negative.

^{*7} If we assume a priori that X_{n-1} and Z_n are uncorrelated, then there is no stationary solution X_n .

Problem 6 (Effective sample size). Let $\{X_n\}_{n=-\infty}^{\infty}$ be a stationary process with $E[X_n] = \mu$ and $E[X_m X_n] = \sigma^2 \rho(m-n)$, where ρ is an autocorrelation function. Denote the sample mean and sample variance of $\{X_n\}_{n=1}^N$ by

$$\bar{X} = \frac{1}{N} \sum_{n=1}^{N} X_n, \quad \hat{\sigma}^2 = \frac{1}{N} \sum_{n=1}^{N} (X_n - \bar{X})^2.$$

- (i) Show that $E[\bar{X}] = \mu$ and $V[\bar{X}] = (\sigma^2/N) \sum_{n=-(N-1)}^{N-1} (1 |n|/N)\rho(n)$. (ii) Show that $E[\hat{\sigma}^2] = \sigma^2 V[\bar{X}]$.
- (iii) Assume $\sum_{n=-\infty}^{\infty} |\rho(n)| < \infty$. Show that

$$\lim_{N \to \infty} NV[\bar{X}] = \sigma^2 f(0), \quad \lim_{N \to \infty} E[\hat{\sigma}^2] = \sigma^2,$$

where $f(0) = \sum_{n=-\infty}^{\infty} \rho(n)$ is the spectral density at frequency zero.

Remark: the quantity $N_{\rm eff} = N/f(0)$ is called the *effective sample size*. If $N_{\rm eff}$ is given, the variance $V[\bar{X}]$ is estimated by $\hat{\sigma}^2/N_{\text{eff}}$. This strategy is used in error estimate of MCMC^{*8}

 $^{^{*8}}$ e.g. the 'coda' package in R language. https://cran.r-project.org/web/packages/coda/coda.pdf