
.

.

. ..

.

.

Theory of Stochastic Processes
1. Overview

Tomonari Sei
sei@mist.i.u-tokyo.ac.jp

Department of Mathematical Informatics, University of Tokyo

April 6, 2017

http://www.stat.t.u-tokyo.ac.jp/~sei/lec.html

1 / 32



Outline of today’s lecture

.

. .

1 Course plan

.

. .

2 Introduction of stochastic processes

.

. .

3 Review of elementary probability theory

2 / 32



Overview

From syllabus:

Course objective Stochastic processes are useful to model random
phenomena changing in time. This course is aimed at an
introduction to stochastic processes.

Teaching methods lecture, mainly using black board

Method of evaluation midterm exam 40%, final exam 60%.
(No assignment, but some exercises will be provided every
week.)

Notes on taking this course Students are assumed to have basic
knowledge of the elementary probability theory that will be
reviewed in the first lecture (= today).
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Book

G. Grimmett and D. Stirzaker, Probability and Random Processes,
3rd ed., Oxford University Press, 2001.

The book title will be abbreviated as PRP.

Author’s web site:
http://www.statslab.cam.ac.uk/~grg/books/prp.html

Copies of necessary parts will be provided in the class.

Will be put in the Library (1st floor) possibly in May.

Thanks to Dr. Alfred Kume for his advice on choosing books.
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Schedule

We will learn about the following topics week by week.

Apr 6 Overview

Apr 13 Simple random walk

Apr 20 Generating functions

Apr 27 Markov chain

May 11 Continuous-time Markov chain

May 18 Markov chain Monte Carlo

May 25 (midterm exam)

June 8 Stationary processes

June 15 Renewal processes

June 22 Martingales

June 29 Queues

July 6 Diffusion processes

July 13 Review

July 20? (Final exam)

Note: the order may be changed.
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Office hours

Office hours are offered

Every Tuesday 12:00–14:00 without appointments.

My office is Room 344 on the 3rd floor of this building.

Feel free to ask any questions and comments.

You can also make an appointment at another time by e-mail

sei@mist.i.u-tokyo.ac.jp

I am happy to go out for coffee :-)

Note: On Apr 18 (Tue), it will be reduced to 13:00–14:00.

Other information will be announced on
http://www.stat.t.u-tokyo.ac.jp/~sei/lec-j.html
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What is a stochastic process?

There are two equivalent definitions:

A set of random variables indexed by time
A random function of time
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An outcome of rolling a dice 25 times.
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Classification of stochastic processes

discrete time continuous time

discrete state
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continuous state

5 10 15 20 25

−
2

−
1

0
1

time

st
at

e

0 200 400 600 800 1000

−
3.

0
−

2.
0

−
1.

0
0.

0

time

st
at

e

Today I introduce only a continuous-time discrete-state process.
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An essay written by K. Itô

Go to the next page!

.

伊藤清「確率論と私」p.57

.

.

.

. ..

.

.

（上略）しかしどこまで進んでも実在は更に複雑で、科学者の立場から
すれば、数学を近似的模型として利用するにすぎない。したがって数学
者が苦心して作り上げた厳密な理論などはあまりに顧慮しないで、相当
乱暴な数学のつかい方をする。たとえば放射性元素の原子 N 個が時間と
ともに崩壊して減少して行く状態を

dN(t)

dt
= −αN(t), N(0) = N

という方程式であらわす。ここに N(t)は時間 t の後における原子数で、
αは単位時間の崩壊率である。N(t)は整数であるから、「到る所微分不可
能な連続関数」の存在すら知っている数学者にとっては、右の方程式は
全く我慢のならない代物である。（中略）

1980年 1月
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An essay written by K. Itô

.

K. Itô, Probability theory and I, p.57. (translated by Sei)

.

.

.

. ..

.

.

(snip) But reality is always further complicated, and scientists use
mathematics just as an approximate model. Therefore, even if
mathematicians made great efforts to build a rigorous mathematical
theory, it is not much taken into account and is used in a quite rough way.
For example, decay of N radioactive elements is described by

dN(t)

dt
= −αN(t), N(0) = N.

Here N(t) is the number of atoms after time t, and α is the decay rate.
Since N(t) is an integer, this equation is completely not acceptable for
mathematicians, who know “functions that are continuous but nowhere
differentiable.” (snip)

Jan 1980
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Go to the next page!

.

続き

.

.

.

. ..

.

.

この問題を数学者が満足するように解くとすれば、次のようになるであろう。
各原子が時間 t の後まで生き延びる確率を p(t)とすれば

dp(t)

dt
= −αp(t), p(0) = 1,

これを解いて
p(t) = e−αt ,

はじめに与えられた原子に番号をつけて 1, 2, · · · ,N とし、原子 nが時間 t の後
に生存しているか、否かに応じて

Xn(t) = 1 または 0

とおくと、時間 t の後に生存している総原子数 N(t)は

N(t) =
N∑

n=1

Xn(t)

で与えられる確率過程である。
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.

(cont.)

.

.

.

. ..

.

.

In order to satisfy mathematicians, solve this problem as follows. Let p(t)
be the probability that each atom is alive after time t. It satisfies

dp(t)

dt
= −αp(t), p(0) = 1.

The solution is
p(t) = e−αt .

Let us number the given N atoms from 1 to N, and define

Xn(t) = 1 or 0

according to life or death of n-th atom at time t. Then, the total number
N(t) of atoms at time t is a stochastic process

N(t) =
N∑

n=1

Xn(t).
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The death process

The above stochastic process N(t) is called the death process.
A sample path of N(t) is like this:

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

The process can be applied to phenomena of decrease.

The world is surrounded by randomness!
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Simulation

Let’s simulate the death process.

.

A naive method

.

.

.

. ..

.

.

For each 1 ≤ n ≤ N, let Tn be the time when the n-th atom dies. The
distribution of Tn is the exponential distribution:

P(Tn ≥ t) = e−αt .

Then, define Xn(t) by

Xn(t) =

{
1 if Tn > t,
0 otherwise.

This is called the indicator variable of the event {Tn > t}.
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Simulation
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# In R language

N = 100; alpha = 2

Ts = rexp(N, alpha)

Es = c(0, sort(Ts))

plot(Es, N:0, type="s", xlim=c(0, 2), xlab="time", ylab="Number of atoms")

curve(N * exp(-alpha*x), add=TRUE, col="red") 16 / 32



Simulation

.

Another method of simulation

.

.

.

. ..

.

.

Let U1, . . . ,UN be independent random variables with

P(Uk ≥ t) = e−(N+1−k)αt .

Then,
∑N

n=1 Xn(t) has the same distribution as

N(t) = N − max{n |
n∑

k=1

Uk ≤ t}

Exercise: Why does this method work?
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Simulation

0.0 0.5 1.0 1.5 2.0

0
20

40
60

80
10

0

time

N
um

be
r 

of
 a

to
m

s

Us = rexp(N, (N:1)*alpha)

Es = c(0, cumsum(Us))

plot(Es, N:0, type="s", xlim=c(0, 2), xlab="time", ylab="Number of atoms")

curve(N * exp(-alpha*x), add=TRUE, col="red")
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Convergence: law of large numbers
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lim
N→∞

P

(∣∣∣∣N(t)

N
− e−αt

∣∣∣∣ > ε

)
= 0 for each t.

We will touch on this kind of limit theorems at a later date.
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Questions on the death process

Remark: There are some probabilistic (or analytic) questions:

Is N(t) constructed above right-continuous?

Furthermore, is it càdlàg (continue à droite, limite à gauche = right
continuous with left limit)?

Does N(t) converge to 0 as t → ∞ with probability 1?

Does it hold that

lim
N→∞

P

(
sup
t≥0

∣∣∣∣N(t)

N
− e−αt

∣∣∣∣ > ε

)
= 0?

You may not need to take this course if you can answer this question
immediately...

More about the process:

What is the time complexity of the simulating methods?

How to obtain the likelihood function with respect to the parameter α
if N(t1), . . . ,N(tk) are observed?
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Remark: The Monte Carlo method

A concept related to simulation is the Monte Carlo method. This is a
quite powerful tool for evaluation of expectations.

For example, an approximate value (with error estimate) of

E

X1 +
1

X2 + 1
X3+

1

X4+ 1
X5


for independent uniform random variables X1, . . . ,X5 on [1, 2] will be
easily obtained.

For more complicated problems, we may need the Markov Chain
Monte Carlo (MCMC) methods.

We will learn about them at a later date.
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Review of elementary probability theory

The first 3 chapters of the book “PRP” are

Chapter 1: Events and their probabilities

Chapter 2: Random variables and their distributions

Chapter 3: Discrete random variables

Recommended problems:

§1.8, Problems 20, 22, 28*, 30 and 37.

§2.7, Problems 4, 12* and 13*.

§3.11, Problems 5, 6, 7, 16, 17, 33* and 34*.

The asterisk (*) shows difficulty.

Work out!
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Review of Chapter 1

.

Definition

.

.

.

. ..

.

.

Let Ω be a set. A collection F of subsets of Ω is called a σ-field if it
satisfies

.

.
.

1 ∅ ∈ F ;

.

.

.

2 A1,A2, . . . ∈ F ⇒ ∪∞
i=1Ai ∈ F ;

.

.

.

3 A ∈ F ⇒ Ac ∈ F .

The set Ω is called the sample space. Each A ∈ F is called an event.

.

Definition

.

.

.

. ..

.

.

A probability measure P on (Ω,F) is a function P : F → [0, 1] such that

P(Ω) = 1;

A1,A2, . . . ∈ F and Ai ∩ Aj = ∅ for any i 6= j
⇒ P(∪∞

i=1Ai ) =
∑∞

i=1 P(Ai ).

The triplet (Ω,F ,P) is called a probability space.
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Review of Chapter 1

.

Definition

.

.

.

. ..

.

.

Let A and B be events. If P(B) > 0, then the conditional probability that
A occurs given that B occurs is defined to be

P(A|B) =
P(A ∩ B)

P(B)
.

.

Definition

.

.

.

. ..

. .

Events A and B are called independent if

P(A ∩ B) = P(A)P(B).

More generally, events A1, . . . ,An are called independent if

P(∩i∈JAi ) =
∏

i∈JP(Ai )

for any subset J ⊂ {1, . . . , n}. (Note: we interpret ⊂ as ⊆.)
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Review of Chapter 2

.

Definition

.

.

.

. ..

.

.

A random variable X on a probability space (Ω,F ,P) is a function
X : Ω → R with the property that {X ≤ a} = {ω ∈ Ω | X (ω) ≤ a} is a
member of F for any a ∈ R.

Keep in mind that a random variable is a function!

But, you can sometimes forget about it
when you use the distribution functions:

.

Definition

.

.

.

. ..

.

.

The (cumulative) distribution function of a random variable X is defined
by F (x) = FX (x) = P(X ≤ x).
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Review of Chapter 2

.

Definition

.

.

.

. ..

.

.

A random variable X is discrete if it takes values only in some countable
subset of R. For the discrete random variable X , the (probability) mass
function is defined by f (x) = P(X = x).

Remark: P(X ∈ A) =
∑

x∈A P(X = x).

.

Definition

.

.

.

. ..

.

.

A random variable X is continuous if its distribution function is written as

F (x) =

∫ x

−∞
f (u)du

for some function f (x) called the (probability) density function.

Remark: P(X ∈ A) =
∫
A f (x)dx .

27 / 32



Review of Chapter 2

.

Definition

.

.

.

. ..

.

.

The joint distribution function of a random vector X = (X1, . . . ,Xn) on
the probability space (Ω,F ,P) is the function

F (x) = FX(x) = P(X1 ≤ x1, . . . ,Xn ≤ xn).

For n = 2, the joint mass function of a discrete random vector (X ,Y ) is

f (x , y) = P(X = x ,Y = y).

The joint density function f (x , y) of a continuous random vector (X ,Y ) is
defined by

F (x , y) =

∫ x

−∞

∫ y

−∞
f (u, v)dudv .
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Review of Chapter 3

The functions FX (x) and FY (y) are called the marginal distribution
functions of FX ,Y (x , y).

.

Definition

.

.

.

. ..

.

.

Random variables X and Y are called independent if

FX ,Y (x , y) = FX (x)FY (y)

for any x and y in R.

Lemma: If (X ,Y ) has the joint mass (or density) function fX ,Y (x , y), then
X and Y are independent if and only if fX ,Y (x , y) = fX (x)fY (y).
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Review of Chapter 3

.

Definition

.

.

.

. ..

.

.

If a discrete random variable X has a mass function f (x), then the
expectation of X is defined by

E[X ] =
∑
x

xf (x).

Lemma: For g : R → R, the expectation of g(X ) is

E[g(X )] =
∑
x

g(x)f (x).

.

Definition

.

.

.

. ..

.

.

The variance of X is defined by Var[X ] = E[(X − E[X ])2].
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Review of Chapter 3

Lemma: For h : R2 → R, the expectation of h(X ,Y ) is

E[h(X ,Y )] =
∑
x

∑
y

h(x , y)f (x , y).

.

Definition

.

.

.

. ..

.

.

The covariance of random variables X and Y is

Cov[X ,Y ] = E[(X − E[X ])(Y − E[Y ])].

The correlation (coefficient) of X and Y is

ρ[X ,Y ] =
Cov[X ,Y ]√
Var[X ]Var[Y ]

Lemma: |ρ[X ,Y ]| ≤ 1.

Lemma: If X and Y are independent, then X and Y are uncorrelated,
meaning ρ[X ,Y ] = 0. But the converse is not true.
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Review of Chapter 3

.

Definition

.

.

.

. ..

.

.

The conditional mass function of Y given X = x is

f (y |x) = P(Y = y |X = x).

The conditional expectation of Y given X = x is

E[Y |X = x ] =
∑
y

yf (y |x).

Let ψ(x) = E[Y |X = x ]. Then ψ(X ) is denoted by E[Y |X ]. In particular,
E[Y |X ] is a random variable.

Lemma (tower property): E[E[Y |X ]] = E[Y ].
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