Theory of Stochastic Processes 10. Martingales

Tomonari Sei sei@mist.i.u-tokyo.ac.jp

Department of Mathematical Informatics, University of Tokyo

June 22, 2017

http://www.stat.t.u-tokyo.ac.jp/~sei/lec.html

Handouts:

- Slides (this one)
- Copy of $\S{12.1}$ and $\S{12.2}$ of PRP

2 Martingales

- Examples
- Doob martingale
- Hoeffding's inequality

The reasons why we learned about stationary processes.

- Why thinking stationarity?
 - Output of MCMC is stationary.
 - Statistical methods often assume independence of data (or error term). But this assumption is sometimes too strong. A tractable class of dependent data is the set of stationary processes.
- Why using spectrum?
 - The spectral density (= power spectrum) is convenient for visualizing the stationary processes.
 - **2** Statistical inference reduces to a simpler form (e.g. Whittle likelihood).

Details are beyond the scope of this lecture.

Martingales

Today's topic

Definition

Let $\{X_n\}_{n\geq 0}$ be a process. A process $\{Y_n\}_{n\geq 0}$ is called a martingale with respect to $\{X_n\}$ if

$$E[Y_{n+1} \mid X_0,\ldots,X_n] = Y_n.$$

Typically $\{Y_n\} = \{X_n\}.$

Martingales are useful for describing fluctuation of random variables.

Important properties

Let X, Y, Z be random variables. Then

- Linearlity: $E[\alpha X + \beta Y|Z] = \alpha E[X|Z] + \beta E[Y|Z]$ for $\alpha, \beta \in \mathbb{R}$.
- If X = f(Z) is a function of Z, then E[XY|Z] = XE[Y|Z].
- If X and Z are independent, then E[X|Z] = E[X].
- Tower property: E[E[X|Y, Z]|Z] = E[X|Z].

Example (symmetric random walk is a martingale)

Let $Y_n = X_1 + \cdots + X_n$, where X_i are independent and $E[X_i] = 0$. Then

$$E[Y_n|X_1,\ldots,X_i]=Y_i.$$

 \rightarrow blackboard

Example (betting game)

- Your initial capital is $Y_0 > 0$.
- For each $n \ge 1$,
 - You bet a money $M_n = M_n(X_1, \ldots, X_{n-1}) \ge 0$.
 - Let $X_n \in \{-1, 1\}$ be a Bernoulli trial.
 - Then $Y_n = Y_{n-1} + M_n X_n$.
- Then the capital process $\{Y_n\}$ is a martingale.

An advanced topic:

• Shafer and Vovk (2001). Probability and Finance, It's only a Game!, Wiley.

Two remarks.

Martingales are not necessarily Markov, and vice versa.
For example, letting {X_i} be independent and E[X_i] = 0,

	Markov	not Markov
martingale	$Y_n = Y_{n-1} + X_n$	$Y_n = Y_{n-1} + X_{n-1}X_n$
not martingale	$Y_n = Y_{n-1} + X_n + 1$	$Y_n = Y_{n-1} + X_{n-1}X_n + 1$

Y is called a submartingale if Y_n ≤ E[Y_{n+1}|X₀,...,X_n] for all n.
Y is called a supermartingale if Y_n ≥ E[Y_{n+1}|X₀,...,X_n] for all n.
Example: In the betting game, a fee may be charged in each round.

Seemingly artificial example: Doob martingale

For any function $S = f(X_1, ..., X_n)$ of a sequence $\{X_i\}_{i=0}^n$, the process

$$Y_i = E[S|X_1,\ldots,X_i], \quad 0 \le i \le n,$$

defines a martingale with respect to $\{X_i\}$. Here $Y_0 = E[S]$.

Exercise

Prove that $\{Y_i\}_{i=0}^n$ is indeed a martingale.

Definition

This martingale is called a Doob martingale.

Example: the bin packing problem (p.477 of PRP)

- Let X_1, \ldots, X_n be the size of objects, assumed to be independent and distributed on [0, 1].
- Let S be the minimum number of bins (of size 1) to pack them.
- The Doob martingale $Y_i = E[S|X_1, ..., X_i]$ is helpful as seen later.

Example: a martingale you may be familiar with

http://www.tokyometro.jp/

Search word	Number of hits	$E[S X_1,\ldots,X_i]$
(all)	142	1/142
K	21	1/21
Ki	6	1/6
Kit	3	1/3
Kita	3	1/3
Kita-	3	1/3
Kita-s	2	1/2
Kita-se	1	1/1
Kita-senju	1	1/1

Let S = 1 if the search word $X = \{X_i\}$ is "Kita-senju" and 0 otherwise. Suppose that the distribution of X is uniform over all the stations.

Unnecessary addition (蛇足)

Which do you like better?

"Life is a martingale."

X_n

"Life is not a martingale."

$$X_n - \frac{n}{N}X_N$$

Hoeffding's inequality (p.476 of PRP)

An amazing result.

Theorem (Azuma-Hoeffding inequality)

Let Y_n be a martingale such that $|Y_n - Y_{n-1}| \le 1$ for each *n*. Then

$$P(|Y_n - Y_0| \ge x) \le 2 \exp\left(-\frac{x^2}{2n}\right)$$

for any x > 0 and n.

- It means that Y_n is concentrated around Y_0 .
- A sketch of proof will be given on the blackboard.

Application: large deviation

If X_1, \ldots, X_n are i.i.d. with $|X_i| \leq 1$ and $E[X_i] = \mu$, then

$$P(|\bar{X} - \mu| \ge \varepsilon) \le 2 \exp\left(-\frac{n\varepsilon^2}{2}\right) \to 0 \quad (n \to \infty).$$

Application

McDiarmid's inequality

Let $X = (X_1, \ldots, X_n)$ be a sequence of independent random variables. If

$$|f(x_1,\ldots,x_i,\ldots,x_n)-f(x_1,\ldots,\tilde{x}_i,\ldots,x_n)|\leq 1, \quad \forall i,x_i,\tilde{x}_i$$

then

$$P(|f(X) - E[f(X)]| \ge t) \le 2 \exp\left(-\frac{t^2}{2n}\right).$$

Example (the bin packing problem; cont.)

For any fixed $\varepsilon > 0$, we have

$$P(|S - E[S]| \ge n\varepsilon) \le 2 \exp\left(-\frac{n\varepsilon^2}{2}\right) \to 0 \quad (n \to \infty).$$

Chromatic number of random graphs \rightarrow see §12.2, Problem 2.

Other topics we do not discuss in detail

- Let F_n = σ(X₁,...,X_n) be the "whole information" of X₁,...,X_n. Mathematically, this is the smallest σ-field such that X₁,...,X_n are measurable. The sequence F = {F_n}_{n≥0} is called a filtration.
- A random variable T taking values in {0, 1, · · · } is called a stopping time if the event {T ≤ n} is F_n-measurable for all n.
 - $\bullet\,$ the time when Hayao started producing movies. $\rightarrow\,$ stopping time
 - $\bullet\,$ the time when Hayao stops producing movies. $\rightarrow\,$ not stopping time

Optional sampling theorem

If Y is a martingale and T is a stopping time, then the "stopped" process $\{Y_{T \wedge n}\}$ is also a martingale. In particular, $E[Y_{T \wedge n}|Y_0] = Y_0$.

Example (absorbing barrier)

Let S_n be the symmetric simple random walk with $0 < S_0 < b$. Put $T = \inf\{n \mid S_n = 0 \text{ or } S_n = b\}$. Then $E[S_{T \land n}] = S_0$.

• Further topics: maximal inequality, convergence theorem etc.

Recommended problems:

- §12.1, Problems 1, 2, 3, 4, 5, 6, 7*, 8, 9*.
- §12.2, Problems 1, 2.

The asterisk (*) shows difficulty.