Theory of Stochastic Processes 11. Queues

Tomonari Sei sei@mist.i.u-tokyo.ac.jp

Department of Mathematical Informatics, University of Tokyo

June 29, 2017

http://www.stat.t.u-tokyo.ac.jp/~sei/lec.html

Handouts:

- Slides (this one)
- Copy of Chapter 8 of PRP
- Copy of §11.1 11.3 of PRP

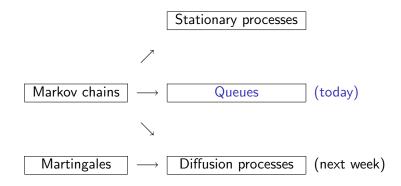
Announcements:

- About the final exam (important!)
 - The final exam is held on July 20 (Thu), 10:25-, 90 min.
 - Contact me if you cannot attend it due to some unavoidable reasons.
 - The exam is open-book and open-note. Write your answer in English.
 - The exam will cover the whole material up to the next lecture (July 6). At least one question will be from the topics before the midterm exam.

Queues

- Examples
- M/M/1
- M/G/1

Dependence of topics



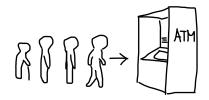
Queues = waiting lines

Today's topic

Example

Consider an ATM which serves customers.

- Customers arrive at ATM according to a stochastic process.
- The service time is also random.



Other examples of queues:

- security check at Narita airport
- hospitals
- Starbucks coffee
- homework you have to do

The queueing theory concerns a mathematical study of queueing systems.

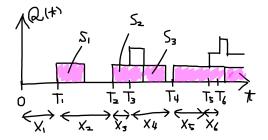
Remark:

- In Japanese, a queue is called "待ち行列".
- Do not confuse it with "行列" (a matrix).

Notation

We only consider single-server queues.

- *T_n* is the time when the *n*-th customer arrives.
- $X_n = T_n T_{n-1}$ is the interarrival time, where $T_0 = 0$.
- S_n is the service time of the *n*-th customer.
- Q(t) is the number of waiting customers at t, including ones served.



Definition

A queueing model is a pair of sequences $\{X_n\}$ and $\{S_n\}$ of independent random variables.

Queueing models are classified by the distributions of X_n and S_n , together with the number of servers (= 1 here). In particular,

- M/M/1: X_n and S_n are exponential (M stands for Markov).
- M/G/1: X_n is exponential and S_n is any (G stands for general).

Remark:

- Remember that interarrival times of a Poisson process are exponential.
- The notation A/B/s is called Kendall's notation.

Definition

The traffic intensity ρ is defined by

$$\rho = \frac{E[S]}{E[X]} = \frac{\text{(mean service time)}}{\text{(mean interarrival time)}}$$

We may expect that

- If $\rho < 1$, then $\{Q(t)\}$ is "stable".
- If $\rho > 1$, then $\{Q(t)\}$ is "unstable".

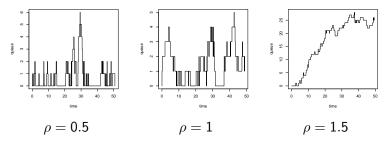
Let us check out this claim for M/M/1 and M/G/1.

M/M/1

- $M(\lambda)/M(\mu)/1$: X_n and S_n are exponential with parameters λ and μ , respectively. The pdfs are $f_X(x) = \lambda e^{-\lambda x}$ and $f_S(x) = \mu e^{-\mu x}$.
- The traffic intensity is

$$\rho = \frac{E[S]}{E[X]} = \frac{1/\mu}{1/\lambda} = \frac{\lambda}{\mu}.$$

• Sample paths of Q(t):



An R code is available from the course web site.

Stability of M/M/1

Theorem 11.2.8

Assume the $M(\lambda)/M(\mu)/1$ model. Then Q(t) is a birth-death process, that is, a continuous-time Markov chain with the generator

$$\mathbf{G} = \begin{pmatrix} -\lambda & \lambda & & \mathbf{0} \\ \mu & -(\lambda + \mu) & \lambda & \\ & \mu & -(\lambda + \mu) & \ddots \\ \mathbf{0} & & \ddots & \ddots \end{pmatrix}$$

In particular, the stationary distribution exists if and only if $\rho = \lambda/\mu < 1$.

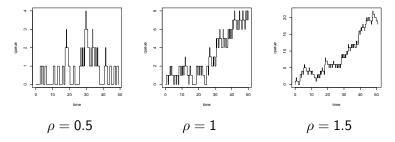
Review exercise

Let $\rho < 1$. Show that the stationary distribution is $\pi_k = (1 - \rho)\rho^k$ and the mean number of waiting customers is $\rho/(1 - \rho)$.

M/G/1

Now let us go on to the M/G/1 model.

• Sample paths of Q(t) when $S_n \equiv 1$ (deterministic).

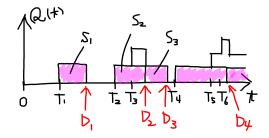


Exercise

Q(t) is no longer a Markov chain. Why?

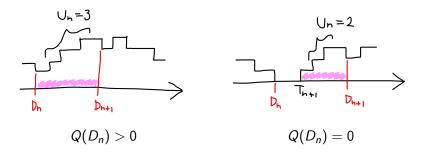
The idea

- Let D_n be the leaving time of the *n*-th customer. In other words, D_n is the *n*-th decreasing point of Q(t).
- We will see that $Q(D_n)$ is a discrete-time Markov chain, where $Q(D_n)$ is inerpreted as $Q(D_n+)$.



Find a Markov chain

- Let U_n be the number of arrived customers during the service time of the (n + 1)-th customer.
- U_n is independent of {Q(t)}_{t≤Dn} because of the Markov property of arriving times.



Exercise

Check that $Q(D_{n+1}) = U_n + \max(Q(D_n) - 1, 0)$.

Theorem 11.3.4

Assume the $M(\lambda)/G/1$ model. Then the discrete-time process $\{Q(D_n)\}$ is a Markov chain with the transition matrix

$$\mathbf{P} = \begin{pmatrix} \delta_0 & \delta_1 & \delta_2 & \cdots \\ \delta_0 & \delta_1 & \delta_2 & \cdots \\ 0 & \delta_0 & \delta_1 & \cdots \\ 0 & 0 & \delta_0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}, \quad \delta_j = P(U_n = j) = E\left[\frac{(\lambda S_n)^j}{j!}e^{-\lambda S_n}\right]$$

Theorem 11.3.5

The unique stationary distribution π exists if and only if $\rho < 1$. In that case, the generating function of π is

$$G(s)=\sum_j \pi_j s^j=(1-
ho)(s-1)rac{M_{\mathcal{S}}(\lambda(s-1))}{s-M_{\mathcal{S}}(\lambda(s-1))},$$

where $M_S(\theta) = E[e^{\theta S_n}]$.

See $\S{11.3}$ for proofs and further details.

Recommended problems:

- §8.4, Problems 1, 2, 3, 4*, 5*.
- §11.2, Problems 3, 7*.
- $\S11.3$, Problem 1*.

The asterisk (*) shows difficulty.