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Handouts & Announcements

Handouts:

Slides (this one)

Copy of Chapter 8 of PRP

Copy of §11.1 – 11.3 of PRP

Announcements:

About the final exam (important!)

The final exam is held on July 20 (Thu), 10:25–, 90 min.
Contact me if you cannot attend it due to some unavoidable reasons.
The exam is open-book and open-note. Write your answer in English.
The exam will cover the whole material up to the next lecture (July 6).
At least one question will be from the topics before the midterm exam.
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Where are we now?

Dependence of topics

Stationary processes

↗

Markov chains −→ Queues (today)

↘

Martingales −→ Diffusion processes (next week)
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Queues = waiting lines

Today’s topic

.

Example

.

.

.

. ..

.

.

Consider an ATM which serves customers.

Customers arrive at ATM according to a stochastic process.

The service time is also random.
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Queueing theory

Other examples of queues:

security check at Narita airport

hospitals

Starbucks coffee

homework you have to do

The queueing theory concerns a mathematical study of queueing systems.

Remark:

In Japanese, a queue is called “待ち行列”.

Do not confuse it with “行列” (a matrix).
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Notation

We only consider single-server queues.

Tn is the time when the n-th customer arrives.

Xn = Tn − Tn−1 is the interarrival time, where T0 = 0.

Sn is the service time of the n-th customer.

Q(t) is the number of waiting customers at t, including ones served.
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Definition

.

Definition

.

.

.

. ..

.

.

A queueing model is a pair of sequences {Xn} and {Sn} of independent
random variables.

Queueing models are classified by the distributions of Xn and Sn, together
with the number of servers (= 1 here). In particular,

M/M/1: Xn and Sn are exponential (M stands for Markov).

M/G/1: Xn is exponential and Sn is any (G stands for general).

Remark:

Remember that interarrival times of a Poisson process are exponential.

The notation A/B/s is called Kendall’s notation.
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An important quantity

.

Definition

.

.

.

. ..

.

.

The traffic intensity ρ is defined by

ρ =
E [S ]

E [X ]
=

(mean service time)

(mean interarrival time)
.

We may expect that

If ρ < 1, then {Q(t)} is “stable”.

If ρ > 1, then {Q(t)} is “unstable”.

Let us check out this claim for M/M/1 and M/G/1.

9 / 16



M/M/1

M(λ)/M(µ)/1: Xn and Sn are exponential with parameters λ and µ,
respectively. The pdfs are fX (x) = λe−λx and fS(x) = µe−µx .

The traffic intensity is

ρ =
E [S ]

E [X ]
=

1/µ

1/λ
=

λ

µ
.

Sample paths of Q(t):
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An R code is available from the course web site.
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Stability of M/M/1

.

Theorem 11.2.8

.

.

.

. ..

.

.

Assume the M(λ)/M(µ)/1 model. Then Q(t) is a birth-death process,
that is, a continuous-time Markov chain with the generator

G =


−λ λ 0
µ −(λ + µ) λ

µ −(λ + µ)
. . .

0
. . .

. . .


In particular, the stationary distribution exists if and only if ρ = λ/µ < 1.

.

Review exercise

.

.

.

. ..

.

.

Let ρ < 1. Show that the stationary distribution is πk = (1− ρ)ρk and the
mean number of waiting customers is ρ/(1 − ρ).
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M/G/1

Now let us go on to the M/G/1 model.

Sample paths of Q(t) when Sn ≡ 1 (deterministic).
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Exercise

.
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.

. ..

.

.

Q(t) is no longer a Markov chain. Why?
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The idea

Let Dn be the leaving time of the n-th customer. In other words, Dn

is the n-th decreasing point of Q(t).

We will see that Q(Dn) is a discrete-time Markov chain, where Q(Dn)
is inerpreted as Q(Dn+).
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Find a Markov chain

Let Un be the number of arrived customers during the service time of
the (n + 1)-th customer.
Un is independent of {Q(t)}t≤Dn because of the Markov property of
arriving times.

Q(Dn) > 0 Q(Dn) = 0

.

Exercise

.

.

.

. ..

.

.

Check that Q(Dn+1) = Un + max(Q(Dn) − 1, 0).
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.

Theorem 11.3.4

.

.

.

. ..

.

.

Assume the M(λ)/G/1 model. Then the discrete-time process {Q(Dn)} is
a Markov chain with the transition matrix

P =

0

B

B

B

B

B

@

δ0 δ1 δ2 · · ·
δ0 δ1 δ2 · · ·
0 δ0 δ1 · · ·
0 0 δ0 · · ·
...

...
...

. . .

1

C

C

C

C

C

A

, δj = P(Un = j) = E

»

(λSn)
j

j!
e−λSn

–

.

.

Theorem 11.3.5

.

.

.

. ..

.

.

The unique stationary distribution π exists if and only if ρ < 1.
In that case, the generating function of π is

G (s) =
∑

j

πjs
j = (1 − ρ)(s − 1)

MS(λ(s − 1))

s − MS(λ(s − 1))
,

where MS(θ) = E [eθSn ].

See §11.3 for proofs and further details.
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Recommended problems

Recommended problems:

§8.4, Problems 1, 2, 3, 4*, 5*.

§11.2, Problems 3, 7*.

§11.3, Problem 1*.

The asterisk (*) shows difficulty.
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