Theory of Stochastic Processes 12. Diffusion processes

> Tomonari Sei sei@mist.i.u-tokyo.ac.jp

Department of Mathematical Informatics, University of Tokyo

July 6, 2017

http://www.stat.t.u-tokyo.ac.jp/~sei/lec.html

Handouts:

- Slides (this one)
- Lecture notes for today

Announcements:

- Next week I will solve a part of recommended problems. If you have specific requests, please let me know by Tuesday.
- There is a course questionnaire. Please answer it today.
- About the final exam (reminder)
 - The final exam is held on July 20 (Thu), 10:25-, 90 min.
 - Contact me if you cannot attend it due to some unavoidable reasons.
 - The exam is open-book and open-note. Write your answer in English.
 - The exam will cover the whole material up to today (July 6). At least one question will be from the topics before the midterm exam.

1 Diffusion processes

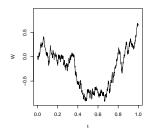
- Brownian motion
- Itô calculus
- Diffusion processes

2 Recommended problems

 \rightarrow Let us look at highlights. Details will be followed.

Brownian motion

A Brownian motion $\{W_t\}_{t\geq 0}$ is a continuous-time version of the symmetric random walk.



Properties:

- a Markov process
- a martingale
- derive a heat equation.

Continuous-time betting game:

- Your initial capital is $X_0 > 0$.
- The stock price W_t is assumed to be a Brownian motion.
- If you hold b_t stocks during the time interval [t, t + Δt], you will obtain b_t(W_{t+Δt} W_t) as a profit.
- Then your capital at time t will be

$$X_t - X_0 = \int_0^t b_s dW_s.$$

The right hand side is called the stochastic integral.

ltô's formula

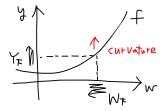
• Remember that if $y_t = f(w_t)$ and w_t is a smooth function of t, then $\frac{dy_t}{dt} = f'(w_t) \frac{dw_t}{dt},$

or simply $dy_t = f'(w_t)dw_t$.

• Itô's formula: if $Y_t = f(W_t)$ and W_t is the Brownian motion, then

$$dY_t = f'(W_t)dW_t + \frac{1}{2}f''(W_t)dt.$$

The second term is caused by fluctuation of the Brownian motion.



A diffusion process is a solution to the stochastic differential equation

$$dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dW_t.$$

Properties:

- a Markov process
- derives a forward equation (Fokker-Planck equation)

Applications:

- modelling of financial data
- stochastic control
- \bullet Langevin Monte Carlo \rightarrow today

Recommended problems:

• Exercises in the lecture notes.