Theory of Stochastic Processes 13. Review

Tomonari Sei sei@mist.i.u-tokyo.ac.jp

Department of Mathematical Informatics, University of Tokyo

July 13, 2017

http://www.stat.t.u-tokyo.ac.jp/~sei/lec.html

Handouts:

- Slides (this one)
- Solved problems

Announcements:

- About the final exam (reminder)
 - The final exam is held on July 20 (Thu), 10:25-, 90 min.
 - Contact me if you cannot attend it due to some unavoidable reasons.
 - The exam is open-book and open-note. Write your answer in English.
 - The exam will cover the whole material up to July 6. At least one question will be from the topics before the midterm exam.

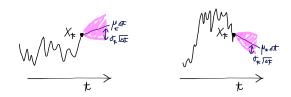
Review: Itô calculus

- Let W_t be the standard Brownian motion.
- An Itô process X_t is defined by

$$dX_t = \mu_t dt + \sigma_t dW_t.$$

 $X_{t+\Delta t}|\mathcal{F}_t \sim \mathcal{N}(\mu_t \Delta t, \sigma_t^2 \Delta t).$

• The conditional distribution given $\mathcal{F}_t = \{W_s\}_{s \leq t}$ is approximately



• X_t is a martingale if $\mu_t = 0$.

Itô's formula:

$$d\{f(t,X_t)\} = \frac{\partial f}{\partial t}dt + \frac{\partial f}{\partial x}dX_t + \frac{1}{2}\frac{\partial^2 f}{\partial x^2}(dX_t)^2.$$

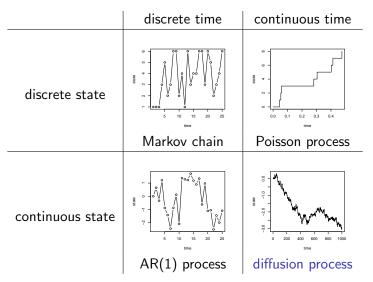
• A diffusion process is a solution to the stochastic differential equation

$$dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dW_t.$$

• X_t is Markov.

The future behavior depends only on the present value.

We encountered many examples of Markov processes.



The forward equation

- Denote the transition density from $X_s = x$ to $X_t = y$ by p(t, y|s, x).
- The forward equation (Fokker-Planck equation) is

$$\frac{\partial p}{\partial t} = -\frac{\partial}{\partial y}(\mu p) + \frac{1}{2}\frac{\partial^2}{\partial y^2}(\sigma^2 p).$$

Key exercise

If μ and σ are constant, then $X_t \sim N(\mu t, \sigma^2 t)$. Write down the transition density p(t, y) = p(t, y|0, 0) and check that the forward equation holds.

Proof sketch: Itô's formula implies

$$dE[f(X_t)] = E[f'(X_t)\mu + (1/2)f''(X_t)\sigma^2]dt$$

for any function f. Since $E[f(X_t)] = \int f(y)p(t, y|s, x)dy$, we have

$$\int f(y)\frac{\partial p}{\partial t}dy = \int \{f'(y)\mu + (1/2)f''(y)\}pdy.$$

The result follows from the integral-by-parts formula.

The diffusion process

$$dX_t = \frac{1}{2}(\log \pi_*(X_t))' dX_t + dW_t$$

has the stationary distribution $\pi(x) = \pi_*(x)/Z$.

• Indeed, $p(t, y) = \pi(y)$ satisfies the forward equation:

$$-\left(rac{1}{2}(\log \pi_*)'\pi
ight)'+rac{1}{2}\pi''=-\left(rac{1}{2}\pi'
ight)'+rac{1}{2}\pi''=0.$$

• MCMC using the diffusion process is called Langevin Monte Carlo.

Metropolis-Adjusted Langevin algorithm (MALA)

• In practice, discretize the equation as

$$X_{t+\Delta t} = X_t + \mu(X_t)\Delta t + \Delta W_t, \quad \Delta W_t \sim N(0, \sqrt{\Delta t})$$

(Euler-Maruyama scheme), where $\mu(x) = (1/2)(\log \pi_*)'(x)$.

• The conditional density of $X_{t+\Delta t}$ given $X_t = x$ is

$$q(y|x) = rac{1}{\sqrt{2\pi\Delta t}} \exp\left(-rac{(y-x-\mu(x)\Delta t)^2}{2\Delta t}
ight).$$

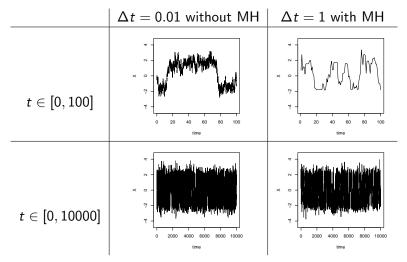
It is used as a proposal density for the Metropolis-Hastings algorithm.

- Specifically, the algorithm is
 - Set an initial value x.
 - **2** Generate a random number y according to q(y|x).
 - Sompute the acceptance probability $a = \min(1, \frac{\pi_*(y)q(x|y)}{\pi_*(x)q(y|x)})$.
 - Genrate $U \sim U(0,1)$. If $U \leq a$, then $x \leftarrow y$. Otherwise, $x \leftarrow x$.
 - Go to step 2.

Example 1

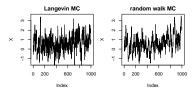
• Let $\pi_*(x) = \frac{1}{\{1 + (x-2)^2\}^3 \{1 + (x+2)^2\}^3}.$

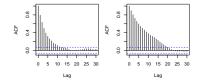
• Sample paths



Example 2

- Let $\pi_*(x) = \phi(x)\Phi(x), \ \phi(x) = e^{-x^2/2}/\sqrt{2\pi} \text{ and } \Phi(x) = \int_{-\infty}^x \phi(z)dz.$
- Comparison of Langevin MC (left) and random walk MC (right), where the random walk MC uses $X_{t+\Delta t} = X_t + \Delta W_t$ as the proposal.





The underlined problems are solved. See the handout.

June 8 (Lec 8) Markov chain Monte Carlo

- §6.5: Problem <u>1</u>, <u>8*</u>, 9.
- §6.14: Problem 1.
- §6.15: Problem 2.

June 15 (Lec 9) Stationary processes

• Problem 1, <u>2</u>, 3, <u>4</u>, <u>5</u>, <u>6</u>.

June 22 (Lec 10) Martingales

- §12.1: Problem 1, 2, <u>3</u>, 4, <u>5</u>, <u>6</u>, 7*, 8, 9*.
- §12.2: Problem <u>1</u>, 2.

June 29 (Lec 11) Queues

- §8.4: Problem <u>1</u>, 2, 3, 4*, 5*.
- §11.2: Problem <u>3</u>, 7*.
- §11.3: Problem <u>1*</u>.

July 6 (Lec 12) Diffusion processes

• Problem 1, <u>2</u>, 3, <u>4</u>, <u>5</u>, 6, <u>7</u>, 8, <u>9</u>.

We have lost fresh flowers but obtained many leaves of knowledge!

Thanks