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Handouts & Announcements

Handouts:

Slides (this one)

Solved problems

Announcements:

About the final exam (reminder)

The final exam is held on July 20 (Thu), 10:25–, 90 min.
Contact me if you cannot attend it due to some unavoidable reasons.
The exam is open-book and open-note. Write your answer in English.
The exam will cover the whole material up to July 6. At least one
question will be from the topics before the midterm exam.
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Outline today

.

. .

1 Review of last week’s material

.

. .

2 Solved problems
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Review: Itô calculus

Let Wt be the standard Brownian motion.
An Itô process Xt is defined by

dXt = µtdt + σtdWt .

The conditional distribution given Ft = {Ws}s≤t is approximately

Xt+∆t |Ft ∼ N(µt∆t, σ2
t ∆t).

Xt is a martingale if µt = 0.

Itô’s formula:

d{f (t, Xt)} =
∂f

∂t
dt +

∂f

∂x
dXt +

1

2

∂2f

∂x2
(dXt)

2.
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Diffusion processes

A diffusion process is a solution to the stochastic differential equation

dXt = µ(t, Xt)dt + σ(t, Xt)dWt .

Xt is Markov.

The future behavior depends only on the present value.
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Markov processes

We encountered many examples of Markov processes.
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The forward equation

Denote the transition density from Xs = x to Xt = y by p(t, y |s, x).
The forward equation (Fokker-Planck equation) is

∂p

∂t
= − ∂

∂y
(µp) +

1

2

∂2

∂y2
(σ2p).

.

Key exercise

.

.

.

. ..

.

.

If µ and σ are constant, then Xt ∼ N(µt, σ2t). Write down the transition
density p(t, y) = p(t, y |0, 0) and check that the forward equation holds.

Proof sketch: Itô’s formula implies

dE [f (Xt)] = E [f ′(Xt)µ + (1/2)f ′′(Xt)σ
2]dt

for any function f . Since E [f (Xt)] =
∫

f (y)p(t, y |s, x)dy , we have∫
f (y)

∂p

∂t
dy =

∫
{f ′(y)µ + (1/2)f ′′(y)}pdy .

The result follows from the integral-by-parts formula.
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Langevin Monte Carlo

The diffusion process

dXt =
1

2
(log π∗(Xt))

′dXt + dWt

has the stationary distribution π(x) = π∗(x)/Z .

Indeed, p(t, y) = π(y) satisfies the forward equation:

−
(

1

2
(log π∗)

′π

)′
+

1

2
π′′ = −

(
1

2
π′

)′
+

1

2
π′′ = 0.

MCMC using the diffusion process is called Langevin Monte Carlo.
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Metropolis-Adjusted Langevin algorithm (MALA)

In practice, discretize the equation as

Xt+∆t = Xt + µ(Xt)∆t + ∆Wt , ∆Wt ∼ N(0,
√

∆t)

(Euler-Maruyama scheme), where µ(x) = (1/2)(log π∗)
′(x).

The conditional density of Xt+∆t given Xt = x is

q(y |x) =
1√

2π∆t
exp

(
−(y − x − µ(x)∆t)2

2∆t

)
.

It is used as a proposal density for the Metropolis-Hastings algorithm.

Specifically, the algorithm is

.

.

.

1 Set an initial value x .

.

.

.

2 Generate a random number y according to q(y |x).

.

.

.

3 Compute the acceptance probability a = min(1, π∗(y)q(x|y)
π∗(x)q(y |x) ).

.

.

.

4 Genrate U ∼ U(0, 1). If U ≤ a, then x ← y . Otherwise, x ← x .

.

.

.

5 Go to step 2.
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Example 1

Let π∗(x) =
1

{1 + (x − 2)2}3{1 + (x + 2)2}3
.
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Example 2

Let π∗(x) = φ(x)Φ(x), φ(x) = e−x2/2/
√

2π and Φ(x) =
∫ x
−∞ φ(z)dz .

Comparison of Langevin MC (left) and random walk MC (right),
where the random walk MC uses Xt+∆t = Xt + ∆Wt as the proposal.
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The underlined problems are solved. See the handout.

June 8 (Lec 8) Markov chain Monte Carlo

§6.5: Problem 1, 8*, 9.
§6.14: Problem 1.
§6.15: Problem 2.

June 15 (Lec 9) Stationary processes

Problem 1, 2, 3, 4, 5, 6.

June 22 (Lec 10) Martingales

§12.1: Problem 1, 2, 3, 4, 5, 6, 7*, 8, 9*.
§12.2: Problem 1, 2.

June 29 (Lec 11) Queues

§8.4: Problem 1, 2, 3, 4*, 5*.
§11.2: Problem 3, 7*.
§11.3: Problem 1* .

July 6 (Lec 12) Diffusion processes

Problem 1, 2, 3, 4, 5, 6, 7, 8, 9.
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Final remark

Before After

We have lost fresh flowers but obtained many leaves of knowledge!

Thanks
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