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Handouts

There are 3 handouts today.

Slides (this one)

A copy of Sections 5.3 to 5.5 of PRP.

A copy of end-of-chapter problems in Chapters 4 to 6. Make sure to
bring it next time.
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Outline today

.

. .
1 Review of last week’s material (slides)

.

. .

2 Generating functions and their applications
Example: recurrence of random walk
Fundamental properties (slides)
Branching processes

.

. .

3 Recommended problems
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Review of last week’s material

.

Simple random walk

.

.

.

. ..

.

.

A simple random walk is

Sn = S0 + X1 + · · · + Xn,

where Xi are independent, P(Xi = 1) = p and P(Xi = −1) = q = 1 − p.

A student gave a following-type question in the lecture.

.

Question on Markov property

.

.

.

. ..

.

.

Two statements are mentioned:

Sn+m is independent of S0, . . . , Sn−1, conditional on Sn.

The future is independent of the past, conditional on the present.

Where are Sn+1, . . . , Sn+m−1?

Good question!
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Conditional independence

Before giving an answer to the question, recall the notion of conditional
independence.

In the following, we only consider discrete random variables, and

P(Y | X ) means “P(Y = y | X = x) for any x , y”.

.

Definition

.

.

.

. ..

.

.

We say that two variables X and Y are independent conditional on Z if

P(X , Y | Z ) = P(X | Z )P(Y | Z ) whenever P(Z ) > 0.

Denote this relation by X ⊥⊥Y | Z . (Dawid’s notation)
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Conditional independence

.

Lemma

.

.

.

. ..

.

.

X ⊥⊥Y | Z is equivalent to P(X | Y ,Z ) = P(X | Z ).

.

Proof.

.

.

.

. ..

.

.

Use the identity P(X | Y , Z ) =
P(X , Y | Z )

P(Y | Z )
.

Remark: One may ask what happens if P(Z ) > 0 and P(Y , Z ) = 0. For
such cases, you have to redefine the conditional independence and study it
carefully. We do not discuss this point anymore. If you get worried, refer
to

M. Studený (2005). Probabilistic Conditional Independence
Structure, Springer.
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On the Markov property

Here is an answer.

.

Theorem

.

.

.

. ..

.

.

For a process {Sn}, the following statements are equivalent to each other.

.

.

.

1 Sn+m ⊥⊥S0, . . . , Sn−1 | Sn for any n, m. (def. of Markov property)

.

.

.

2 Sn+1, . . . , Sn+m ⊥⊥S0, . . . , Sn−1 | Sn for any n, m.

.

.

.

3 The joint mass function of S0, . . . , Sn for any n is written as

P(S0, . . . , Sn) = P(S0)
n∏

t=1

P(St | St−1).
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Proof

You can skip.

.

Proof.

.

.

.

. ..

.

.

(2)→(1) is easily proved by marginalization. Proofs of (1)→(3) and
(3)→(2) are given below.

.

Proof of (1)→(3).

.

.

.

. ..

.

.

The statement (1) means

P(Sn+1 | S0, . . . , Sn) = P(Sn+1 | Sn).

By multiplying this equation over n’s, we obtain

P(S0)
n∏

i=1

P(Si | S0, . . . , Si−1) = P(S0)
n∏

i=1

P(Si | Si−1).

The left hand side is equal to P(S0,S1, . . . , Sn).
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You can skip.

.

Proof of (3)→(2).

.

.

.

. ..

.

.

The statement (3) implies

P(S0, . . . , Sn+m) = P(S0, . . . , Sn)
n+m∏

t=n+1

P(St | St−1).

By summing up both sides with respect to S0, . . . , Sn−1, we have

P(Sn, . . . , Sn+m) = P(Sn)
n+m∏

t=n+1

P(St | St−1).

From the above two equations, we obtain the relation

P(Sn+1, . . . , Sn+m | S0, . . . , Sn) =
n+m∏

t=n+1

P(St | St−1)

= P(Sn+1, . . . , Sn+m | Sn).
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Remark: Graphical model

The Markov property is visualized as follows.

But this picture is rarely used in the class since it might be confused
with the transition diagram of Markov chains introduced next week.
More generally, the following theorem is known.

.

Hammersley-Clifford theorem (e.g. Theorem 3.9 of Lauritzen (1996))

.

.

.

. ..

.

.

Let X = (Xv )v∈V be a random vector indexed by V , and G be an undirected graph with
vertices V . Suppose that the mass function f (x) is positive everywhere. Then all the
conditional independence relations implied by G hold if and only if
f (x) =

Q

C :clique ψC (xC ) for some ψC ’s.
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Outline of today’s lecture

.

. .
1 Review of last week’s material (slides)

.

. .

2 Generating functions and their applications
Example: recurrence of random walk
Fundamental properties (slides)
Branching processes

.

. .

3 Recommended problems
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Recurrence of random walk

.

Blackboard

.

.

.

. ..

.

.

Let Sn be a simple random walk with S0 = 0.

Find the probability of

{∃n ≥ 1, Sn = 0}.
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Generating function

Generating functions are sometimes useful for thinking of “recurrence”.

.

Definition

.

.

.

. ..

.

.

For any sequence a = {an}∞n=0 of numbers, the (ordinal) generating
function is defined by

Ga(s) =
∞∑

n=0

ans
n.
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.

Example

.

.

.

. ..

.

.

Consider a recurrence formula (= difference equation)

ak =
1

k!
+

1

2
ak−1 (k ≥ 1), a0 = 1.

By multiplying sk on both sides and summing over k ≥ 1, we obtain

Ga(s) − 1 = es − 1 +
1

2
sGa(s).

⇒ Ga(s) =
es

1 − s/2

=

(∑
m

sm

m!

)(∑
n

sn

2n

)
.

You may expand the right hand side to obtain each term ak .
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Properties (taken from p.150 of PRP)

.

Convolution

.

.

.

. ..

.

.

If cn = a0bn + a1bn−1 + · · · + anb0, then Gc(s) = Ga(s)Gb(s).

.

Convergence

.

.

.

. ..

.

.

There exists a radius of convergence R (≥ 0) such that the sum converges
absolutely if |s| < R and diverges if |s| > R.

.

Differentiation

.

.

.

. ..

.

.

Ga(s) may be differentiated or integrated term by term any number of
times at points s satisfying |s| < R. For example, G ′

a(s) =
∑

n≥1 nans
n−1.

.

Uniqueness

.

.

.

. ..

.

.

If R > 0, the sequence {an} is uniquely determined by Ga(s). Explicitly,

an =
1

n!
G

(n)
a (0) (note: this calculation is often unnecessary).

15 / 23



Abel’s theorem

.

Abel’s theorem

.

.

.

. ..

.

.

If an ≥ 0 for all n and Ga(s) < ∞ for |s| < 1, then

lim
s↑1

Ga(s) =
∞∑

n=0

an,

where the sum is finite or +∞.

For students who know measure theory: Abel’s theorem is a particular
case of Lebesgue’s monotone convergence theorem.
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You can skip.

.

Proof of Abel’s theorem.

.

.

.

. ..

.

.

Suppose first that
∑∞

n=0 an = +∞. Fix any large number M > 0. Then

there is an integer N such that
∑N

n=0 an > M. Then

Ga(s) =
∞∑

n=0

ans
n ≥

N∑
n=0

ans
n →

N∑
n=0

an as s ↑ 1.

Thus lims↑1 Ga(s) ≥ M. Since M is arbitrary, lims↑1 Ga(s) = ∞.

Next suppose that A = Ga(1) =
∑∞

n=0 an is finite. Fix any small number
ε > 0. Then there is an integer N such that

∑∞
n=N+1 an < ε. Then

|Ga(s) − A| ≤
∞∑

n=0

an|sn − 1| ≤
N∑

n=0

an|sn − 1| + ε → ε as s ↑ 1.

Thus lims↑1 |Ga(s) − A| ≤ ε. Since ε is arbitrary, lims↑1 |Ga(s) − A| = 0.
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Probability generating function

.

Definition

.

.

.

. ..

.

.

The (probability) generating function GX (s) of a random variable X taking
values in non-negative integers is defined by

GX (s) = E [sX ] =
∞∑

k=0

sk f (k),

where f (k) = P(X = k) is the mass function of X .

It is obvious that GX (1) = 1.

.

Examples

.

.

.

. ..

.

.

If f (k) =

(
n

k

)
pk(1 − p)n−k , then GX (s) = (1 − p + ps)n.

If f (k) = pk(1 − p), then GX (s) = (1 − p)/(1 − ps).
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Properties

We have the following properties as before.

.

Convolution

.

.

.

. ..

.

.

If X and Y are independent, then GX+Y (s) = GX (s)GY (s).

.

Convergence

.

.

.

. ..

.

.

GX (s) absolutely converges if |s| ≤ 1.

.

Differentiation

.

.

.

. ..

.

.

G ′
X (1) = E [X ] and G ′′

X (1) = E [X (X − 1)].

.

Uniqueness

.

.

.

. ..

.

.

f (n) is uniquely determined by GX (s). Explicitly, f (n) =
G (n)(0)

n!
.
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Other transform

The following is relevant. But we do not use them today.

Moment generating function MX (t) = E [etX ], t ∈ R.

Fact: If MX (t) < ∞ over an open interval containing 0, then MX is

analytic over the interval and M
(n)
X (0) = E [X n].

Characteristic function φX (t) = E [e itX ], i =
√
−1, t ∈ R.

Fact: The characteristic function is well defined for any random
variable X . The distribution of X is uniquely determined by φX (t).

Correspondence:

probabilistic generating function = Z-transform
moment generating function = Laplace transform
characteristic function = Fourier transform
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Random walk again

Now let us find out the recurrence probability of the random walk using
generating functions.

.

Blackboard

.

.

.

. ..

.

.

There are other approaches (exercise)

Using absorbing probability

Using the reflection principle
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Branching processes

.

Blackboard

.

.

.

. ..

.

.

Suppose that a population evolves in generations.

Let Zn be the number of members of the nth generation.

Each member of the nth generation gives birth to a family of
members of the (n + 1)th generation.

Assumptions:

(a) Z0 = 1.

(b) Zn = X
(n)
1 + · · · + X

(n)
Zn−1

.

(c) X
(j)
i are independent and have the same probability mass function f

and the generating function G .

Zn is called a branching process (or Galton-Watson process).

How to obtain the generating function Gn(s) of Zn using G?
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Recommended problems

Recommended problems:

§5.3, Problem 1, 3*.

§5.4, Problem 4.

§5.12, Problem 5, 6*, 10*, 11, 17.

The asterisk (*) shows difficulty.
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