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Handouts & Announcements

There are 2 handouts today.

Slides (this one)

A copy of Sections 6.1 to 6.6 of PRP.

Announcement:

Hints for recommended problems were uploaded. Some of them are
incomplete. Please let me know if you have a better answer!
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More about Abel’s theorem

Abel’s theorem we used last week is different from (but related to) the
following one.

.

Abel’s theorem (usual one)

.

.

.

. ..

.

.

Let an ∈ R and G (s) =
∑∞

n=0 ans
n. Suppose that the radius of

convergence is 1, and
∑∞

n=0 an converges. Then

lim
s↑1

G (s) =
∞∑

n=0

an.

.

Example

.

.

.

. ..

.

.

log 2 =
∞∑

n=1

(−1)n−1

n
.

For a proof of the theorem, refer to

K. A. Ross (2013) Elementary Analysis, Springer (available online).
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What is the branching process?

The branching process is a tractable model for evolution of a population.
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Branching processes

Let Zn be the number of members of the nth generation.

Assumptions:

(a) Z0 = 1.

(b) Zn = X
(n)
1 + · · · + X

(n)
Zn−1

.

(c) X
(n)
i are independent and have the same probability mass function f

and the generating function G .

Zn is called a branching process (or Galton-Watson process).

How to obtain the generating function Gn(s) of Zn using G?
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Generating function of branching processes

.

Theorem 5.4.1 of PRP

.

.

.

. ..

.

.

The generating function of Zn satisfies

Gn(s) = Gn−1(G (s)) = (G ◦ · · · ◦ G︸ ︷︷ ︸
n times

)(s).

Proof: Note that G0(s) = s. For n ≥ 1,

Gn(s) = E [sZn ]

= E [s
X

(n)
1 +···+X

(n)
Zn−1 ]

= E [E [s
X

(n)
1 +···+X

(n)
Zn−1 |Zn−1]] (tower property)

= E [
∏Z

(n)
n−1

i=1 E [sX
(n)
i ]] (independence)

= E [G (s)Z
(n)
n−1 ] (definition of G )

= Gn−1(G (s)).
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.

Example

.

.

.

. ..

.

.

Let f (k) = qpk (geometric distribution). Then

G (s) = E [sX ] =
∑
k

qpksk =
q

1 − ps
,

G2(s) = G (G (s)) =
q

1 − p q
1−ps

=
q − pqs

1 − pq − ps
,

G3(s) = G2(G (s)) =
q − pq q

1−ps

1 − pq − p q
1−ps

=
q − pq2 − pqs

1 − 2pq − p(1 − pq)s
,

· · ·

In general, put Gn(s) = an+bns
cn+dns

. Then

Gn(s) = Gn−1(G (s)) =
an−1 + bn−1

q
1−ps

cn−1 + dn−1
q

1−ps

=
an−1 + qbn−1 − pan−1s

cn−1 + qdn−1 − pcn−1s
.

Thus we have the following recurrence equation for an, bn, cn, dn.
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.

Example (cont.)

.

.

.

. ..

.

.

The recurrence equation in a matrix form is(
an

bn

)
=

(
1 q
−p 0

)(
an−1

bn−1

)
,

(
cn

dn

)
=

(
1 q
−p 0

)(
cn−1

dn−1

)
.

With the initial condition G0(s) = s = 0+1s
1+0s , we have(

an cn

bn dn

)
=

(
1 q
−p 0

)n (
0 1
1 0

)
.

Use the spectral decomposition to obtain(
an cn

bn dn

)
=

1

p − q

(
q(pn − qn) pn+1 − qn+1

−pq(pn−1 − qn−1) −p(pn − qn)

)
.

Compare with p.172 of PRP (a copy was provided last week).
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Extinction

Ultimate extinction is the event {Zn = 0 for some n}.

.

Theorem 5.4.5

.

.

.

. ..

.

.

As n → ∞, P(Zn = 0) → P(ultimate extinction) = η, where η is the
smallest non-negative root of s = G (s).

A sketch of proof: P(Zn = 0) = Gn(0) = (G ◦ · · · ◦ G︸ ︷︷ ︸
n times

)(0).
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Phase transition

Let µ = G ′(1) = E [Z1] and η = P(ultimate extinction).

.

Corollary (“phase transition”)

.

.

.

. ..

.

.

µ > 1 ⇒ η < 1.

µ < 1 ⇒ η = 1.

.

Exercise (5 min)

.

.

.

. ..

.

.

Let f be a trinomial distribution

f (k) =


p if k = 2,
q if k = 1,
r = 1 − p − q if k = 0,

where p, q, r > 0. Find the condition that P(ultimate extinction) < 1.
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Markov chains

A process with the Markov property is called a Markov chain, that is,

.

Definition

.

.

.

. ..

.

.

A process X = {Xn}n≥0 is called a Markov chain if

P(Xn = s | X0 = x0, . . . , Xn−1 = xn−1) = P(Xn = s | Xn−1 = xn−1)

for all n ≥ 1 and for all s, x1, . . . , xn−1 ∈ S . Here S denotes the state
space.

Again, the Markov property means

the future is independent of the past conditional on the present.

13 / 24



Examples

.

Examples

.

.

.

. ..

.

.

Examples of Markov chains:

random walks

branching processes

card shuffling
♠,♥,♦,♣

The size of the state space is 52! ≈ 8.066 × 1067.

Examples of not a Markov chain:

Let X0, X1, . . . be a Bernoulli trial, and let Yn = Xn + Xn+1 for n ≥ 0.
Then Yn is not a Markov chain. → Why?

A broad class of non-Markov chains is the hidden Markov model
(HMM). This is quite important for application, but not discussed.
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Applications

How to construct a maze randomly?

S

G

Markov chain can do it!
→ will be explained later.

Propp and Wilson (1998). J. Algorithm, 27, 170–217.
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Transition diagram

If the state space is small or simple, the transition diagram is useful.

.

. .
1 A bench:

.

.

.

2 A simple random walk:

· · · � © � © � © � © � · · ·
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Notation

We briefly mention the limiting behavior of Markov chains without proofs.
Let’s begin!

Let S be a countable subset, called the state space.

We only consider homogeneous Markov chains, that is,

P(Xn+1 = j | Xn = i) = P(X1 = j | X0 = i) for all n, i , j .

Define the transition matrix P = (pij) of a Markov chain X by

pij = P(X1 = j | X0 = i).

Define the n-step transition matrix Pn = (pij(n)) by

pij(n) = P(Xn = j | X0 = i).

A stationary distribution of P is a mass function π = (πi ) such that∑
i∈S

πipij = πj for all j .

In matrix notation, πP = π.
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Classification of states and chains (I)

A Markov chain is said to be irreducible if, for any states i and j ,
there exists n ≥ 1 such that pij(n) > 0.

A state i is said to be aperiodic if there exists n0 such that pii (n) > 0
for any n ≥ n0.

If all the states are aperiodic, then the chain is called aperiodic.

.

Example

.

.

.

. ..

.

.

A simple random walk is irreducible but not aperiodic (i.e. periodic).

· · · � © � © � © � © � · · ·

For more details, see Sections 6.2 and 6.3.
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Exercises

.

Blackboard

.

.

.

. ..

.

.

Is card shuffling irreducible/aperiodic?

Show that the example of mazes is irreducible and aperiodic.
→ refer to the paper by Propp and Wilson mentioned before.
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Classification of states and chains (II)

Let Ti = inf{n ≥ 1 | Xn = i} for a state i . Note that Ti may be ∞.

The mean recurrence time µi of a state i is defined as

µi = E [Ti | X0 = i ].

A state i is called persistent if P(Ti < ∞) = 1.

A persistent state i is called non-null if µi < ∞; null otherwise.

If all the states are persistent, then the chain is called persistent.

.

Example

.

.

.

. ..

.

.

A symmetric simple random walk is null persistent. (last week’s material)

· · · � © � © � © � © � · · ·

For more details, see Sections 6.2 and 6.3.
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Stationary distributions

Now we state main theorems without proofs.

.

Theorem 6.4.3

.

.

.

. ..

.

.

An irreducible Markov chain has a stationary distribution π if and only if
all the states are non-null persistent; in this case, πi = 1/µi .

The theorem is reasonable: since the chain comes the state i once in each
period µi on average, the probability that the chain is at i will be 1/µi .
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The limit theorem

.

Theorem 6.4.17

.

.

.

. ..

.

.

For an irreducible aperiodic non-null persistent Markov chain, we have that

pij(n) → 1

µj
as n → ∞, for all i and j .

The proof is based on a coupling argument.
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Finite state space

.

Lemma 6.4.5

.

.

.

. ..

.

.

Let S be finite. If a Markov chain is irreducible, then it is non-null
persistent. In other words, πP = π has a unique solution.

This is a corollary of the Perron-Frobenius theorem (Theorem 6.6.1), a
proof of which is found in

J. Liesen and V. Mehrmann (2015). Linear Algebra, Springer
(available online).

.

Exercise

.

.

.

. ..

.

.

Find the stationary distribution of

P =


0 1/3 1/3 1/3
1 0 0 0
1 0 0 0

1 − 2δ δ δ 0

 .
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Recommended problems

Recommended problems:

§6.1, Problem 2, 3, 8, 10.

§6.4, Problem 4, 6.

§6.15, Problem 1, 9*.

The asterisk (*) shows difficulty.

The next Thursday is “Green Day”.
See you the week after next!
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