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Handouts & Announcements

There are 2 handouts today.
@ Slides (this one)
@ A copy of Sections 6.1 to 6.6 of PRP.

Announcement:

@ Hints for recommended problems were uploaded. Some of them are
incomplete. Please let me know if you have a better answer!



Outline today

© Review of last week’'s material
@ More about Abel’s theorem
@ Branching processes

9 Markov chains
@ Examples
@ Irreducibility and aperiodicity
@ Stationary distributions and the limit theorem

© Recommended problems



More about Abel's theorem

Abel’s theorem we used last week is different from (but related to) the
following one.

Abel’s theorem (usual one)

Let a, € R and G(s) = > ;2 ans". Suppose that the radius of
convergence is 1, and >, a, converges. Then

E{'TG s) = Za,,

| \

Example
N

log2 = Z

n=1

For a proof of the theorem, refer to
o K. A. Ross (2013) Elementary Analysis, Springer (available online).
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What is the branching process?

The branching process is a tractable model for evolution of a population.

o Zs':lf‘



Branching processes

Let Z, be the number of members of the nth generation.

Assumptions:
(a) Z() =1.
(b) Zy=X{" 4+ + X .
(c) X,-(") are independent and have the same probability mass function f
and the generating function G.

Z, is called a branching process (or Galton-Watson process).

@ How to obtain the generating function G,(s) of Z, using G?



Generating function of branching processes

Theorem 5.4.1 of PRP

The generating function of Z, satisfies

Go(s) = Gn_1(G(s)) = (G o - -~ 0 G)(s).

n times

Proof: Note that Go(s) =s. For n > 1,
Gn(s) = E[SZ"]

) (m
_E[ ++Xn1]

XX -11Z,-1]] (tower property)

= E[E[
= E[H E[st ]] (independence)
= E[G(s) "71] (definition of G)

= Gp-1(G(s))-



Example

Let f(k) = gp* (geometric distribution). Then

G(s) = E[s¥] =) _qp*s* =
k

1—ps’
q q— pgs
Go(s) = G(G(s)) = = ,
2(s) = G(G(s)) T 1-pg—ps
q—Ppqi2 — pg® — pgs
Go(s) = Ga(G()) e _ q—pPq° — pq

~ 1-pg—prls  1-2pg—p(1l-pg)s’

In general, put G,(s) = %2"2. Then

9
an-1+ bn-1 1-ps _ an—1+1gbp—1 — pan_1s

Cn—1+ dp—1 1_qps Cn—1+ qdp—1 — pCp-15

Thus we have the following recurrence equation for a,, by, ¢, dy.




Example (cont.)

The recurrence equation in a matrix form is

-G @-C a6y

With the initial condition Go(s) = s = 3132, we have

(2= 9 G a)

Use the spectral decomposition to obtain

<an Cn> - 1 ( q(pn _ qn) pn+1 _ qn+1>
br dn)  p—q \—pa(p"t—q" ') —p(p"—q"))"

Compare with p.172 of PRP (a copy was provided last week).




Ultimate extinction is the event {Z, = 0 for some n}.

Theorem 5.4.5
As n — oo, P(Z, = 0) — P(ultimate extinction) = 1, where 7 is the
smallest non-negative root of s = G(s).

A sketch of proof: P(Z,=0)= G,(0) =(Go---0 G)(0).

n times
U G
/________
\
|
7L __. \
G0\ L5 | \
(A7) | |
] [ N
o 7 / S
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Phase transition

Let u = G'(1) = E[Z1] and n = P(ultimate extinction).

Corollary (“phase transition”)
ou>1 = n<l.

ou<l = n=1

Exercise (5 min)
Let f be a trinomial distribution
if k=2,
if k=1,
=1—p—q ifk=0,

f(k) =

S QT

where p, g, r > 0. Find the condition that P(ultimate extinction) < 1.
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Outline today

9 Markov chains
@ Examples
@ Irreducibility and aperiodicity
@ Stationary distributions and the limit theorem
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Markov chains

A process with the Markov property is called a Markov chain, that is,

Definition

A process X = {X,}n>0 is called a Markov chain if
P(Xn =S | XO = X0, - - - aXn—l = Xn_1) = P(Xn =S | Xn—l = Xn_1)

for all n > 1 and for all s,x1,...,x,—1 € S. Here S denotes the state
space.

Again, the Markov property means

the future is independent of the past conditional on the present.
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Examples

Examples of Markov chains:

@ random walks
@ branching processes
o card shuffling
L VAN

The size of the state space is 52! ~ 8.066 x 1067,

Examples of not a Markov chain:

@ Let Xp, X1, ... be a Bernoulli trial, and let Y, = X, + X,41 for n > 0.
Then Y, is not a Markov chain. — Why?

@ A broad class of non-Markov chains is the hidden Markov model
(HMM). This is quite important for application, but not discussed.

v
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Applications

How to construct a maze randomly?

[
\

o
S

Markov chain can do it!
— will be explained later.

Propp and Wilson (1998). J. Algorithm, 27, 170-217.
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Transition diagram

If the state space is small or simple, the transition diagram is useful.
O A bench:

@ A simple random walk:
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We briefly mention the limiting behavior of Markov chains without proofs.
Let's begin!

@ Let S be a countable subset, called the state space.

@ We only consider homogeneous Markov chains, that is,

PXpy1=Jj| Xo=10)=P(Xy=j|Xo=1i) forall n,i,j.

@ Define the transition matrix P = (pj;) of a Markov chain X by
pij = P(X1=j| Xo = ).

o Define the n-step transition matrix P, = (pj;(n)) by

pii(n) = P(Xp =j | Xo = i)

@ A stationary distribution of P is a mass function 7w = (7;) such that
Zw,-p,-j =m; forall j.
ieS

In matrix notation, wP = .
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Classification of states and chains (1)

@ A Markov chain is said to be irreducible if, for any states / and j,
there exists n > 1 such that p;;(n) > 0.

@ A state / is said to be aperiodic if there exists ng such that p;;/(n) > 0
for any n > ng.

o If all the states are aperiodic, then the chain is called aperiodic.

A simple random walk is irreducible but not aperiodic (i.e. periodic).

" S05050505 -

For more details, see Sections 6.2 and 6.3.
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Exercises

Blackboard

o Is card shuffling irreducible/aperiodic?

@ Show that the example of mazes is irreducible and aperiodic.
— refer to the paper by Propp and Wilson mentioned before.
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Classification of states and chains (I1)

Let T; = inf{n > 1| X, = i} for a state i. Note that T; may be cc.

@ The mean recurrence time p; of a state i/ is defined as
i = E[T, ’ XO = I]

A state i is called persistent if P(T; < c0) = 1.

A persistent state 7 is called non-null if u; < oo; null otherwise.

If all the states are persistent, then the chain is called persistent.

A symmetric simple random walk is null persistent. (last week's material)

SO05050505 -

For more details, see Sections 6.2 and 6.3.
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Stationary distributions

Now we state main theorems without proofs.

Theorem 6.4.3

An irreducible Markov chain has a stationary distribution 7 if and only if
all the states are non-null persistent; in this case, m; = 1/p;.

The theorem is reasonable: since the chain comes the state / once in each
period 1; on average, the probability that the chain is at 7 will be 1/p;.
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The limit theorem

Theorem 6.4.17
For an irreducible aperiodic non-null persistent Markov chain, we have that

1
pij(n) — — as n—oo, foralliandj.
Hj

The proof is based on a coupling argument.
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Finite state space

Lemma 6.4.5

Let S be finite. If a Markov chain is irreducible, then it is non-null
persistent. In other words, wP = 7 has a unique solution.

This is a corollary of the Perron-Frobenius theorem (Theorem 6.6.1), a
proof of which is found in
@ J. Liesen and V. Mehrmann (2015). Linear Algebra, Springer
(available online).

Exercise
Find the stationary distribution of

0 1/3 1/3 1/3 =
C 5 b 6 = pee
P=l 1 o o o[ AN

1-26 6 6 0 [To) (919




Recommended problems

Recommended problems:
@ §6.1, Problem 2, 3, 8, 10.
@ §6.4, Problem 4, 6.
@ §6.15, Problem 1, 9*.

The asterisk (*) shows difficulty.

The next Thursday is “Green Day".
See you the week after next!
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