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Handouts & Announcements

Handouts

Slides (this one)

A copy of Sections 6.8 and 6.9 of PRP.

About the midterm exam (important!)

The midterm exam is on May 25 (Thu) in class.

The exam is open-book and open-note: You can bring any book,
note, printed copy and so on. Computers are not allowed.

It will consist of 4 or 5 questions and will cover material up to today.
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Schedule

We change the schedule.

Apr 6 Overview

Apr 13 Simple random walk

Apr 20 Generating functions

Apr 27 Markov chain

May 11 Continuous-time Markov chain

May 18 Markov chain Monte Carlo → Review

May 25 (midterm exam)

June 8 Stationary processes → Markov chain Monte Carlo

June 15 Renewal processes → Stationary processes

June 22 Martingales

June 29 Queues

July 6 Diffusion processes

July 13 Review

July 20? (Final exam)

The schedule might be further changed...
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Outline of today’s lecture

.

. . 1 Review of last week’s material
Irreducibility and aperiodicity
Stationary distributions and the limit theorem

.

. .

2 Continuous-time Markov chains
The Poisson process
Continuous-time Markov chains
Generator

.

. .

3 Recommended problems
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Notation (reminder)

We consider a Markov chain with the transition matrix P = (pij),
where pij = P(X1 = j | X0 = i) for i , j ∈ S .
The n-step transition probability is

pij(n) = P(Xn = j | X0 = i) =
∑
k1

· · ·
∑
kn−1

pik1 · · · pkn−1j .

A stationary distribution of P is a probability mass function π = (πi )
such that πP = π in matrix notation.
A Markov chain is said to be irreducible if, for any states i and j ,
there exists n ≥ 1 such that pij(n) > 0.
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About aperiodicity

We redefine the aperiodicity as follows. (This is the definition in PRP)

.

Definition

.

.

.

. ..

.

.

The period of a state i is defined by d(i) = gcd{n ≥ 1 | pii (n) > 0}. A
state i is said to be aperiodic if d(i) = 1; periodic otherwise.

Last week’s definition is equivalent:

.

Proposition (characterization; Problem 6.15.4)

.

.

.

. ..

.

.

A state i is aperiodic if and only if there exists n0 such that pii (n) > 0 for
any n ≥ n0.

6 / 32



.

Example

.

.

.

. ..

.

.

pii (4) > 0, pii (5) > 0

{
⇒ d(i) = 1.
⇒ pii (n) > 0 for all n ≥ 12.

4a + 5b a =0 1 2 3 4 5

b =0 0 4 8 12 16 20 · · ·
1 5 9 13 17 21 25 · · ·
2 10 14 18 22 26 30 · · ·
3 15 19 23 27 31 35 · · ·

The Frobenius problem in number theory

https://en.wikipedia.org/wiki/Coin_problem
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You may skip.

.

Proof.

.

.

.

. ..

.

.

Let H = {n ≥ 1 | pii (n) > 0}. Then H is a semigroup, that is,

n1, n2 ∈ H ⇒ n1 + n2 ∈ H.

Suppose d(i) = 1. Then there exist n1, . . . , nm ∈ H such that gcd(n1, . . . , nm) = 1. By
the Euclidean algorithm, there exist (possibly negative) integers c1, . . . , cm such that
P

j cjnj = 1. Let N =
P

j nj , C = maxj |cj |N, and n0 = NC . For any n ≥ n0, we have
n = qN + r with some q ≥ C and 0 ≤ r < N. Since

n = qN + r =
X

j

(q + rcj)nj

and q + rcj ≥ C − N|cj | ≥ 0, we deduce that n ∈ H.

Conversely, suppose that there exists n0 such that n ∈ H for any n ≥ n0. In particular,
n0 ∈ H and n0 + 1 ∈ H. Then we have d(i) = 1 since gcd(n0, n0 + 1) = 1.

8 / 32



Remark

.

Theorem 6.3.2 (a)

.

.

.

. ..

.

.

If the chain is irreducible, then all the states have the same period.

.

Example

.

.

.

. ..

.

.

y
i© � © � © � j© Both i and j are aperiodic.

.

Proof.

.

.

.

. ..

.

.

We only prove the aperiodic case. Let i , j ∈ S and assume d(i) = 1.

By irreducibility, there exist n1, n2 such that pij(n1) > 0, pji (n2) > 0.

By aperiodicity, there exists n0 such that pii (n) > 0 for all n ≥ n0.

Then
pjj(n) ≥ pji (n2)pii (n − n1 − n2)pij(n1) > 0

for all n ≥ n0 + n1 + n2. Therefore d(j) = 1.
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Persistence (= recurrence)

Let Ti = inf{n ≥ 1 | Xn = i}. Note that Ti may be ∞.

.

Definition

.

.

.

. ..

.

.

A state i is called persistent if P(Ti < ∞ | X0 = i) = 1; transient
otherwise.

The mean recurrence time of a state i is defined as

µi = E [Ti | X0 = i ].

A persistent state i is called non-null if µi < ∞; null otherwise.

.

Exercise

.

.

.

. ..

.

.

Let P =

(
0.5 0.5
1 0

)
. Show that µ1 = 3/2 and µ2 = 3.
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The answer to the following problem will be given next week.

.

Exercise

.

.

.

. ..

.

.

Show that the symmetric simple random walk is null persistent.

· · · � © � © � © � © � · · ·

(p = q = 1/2)

Hint: Fix any i ∈ Z. Let fii (n) = P(Ti = n | X0 = i). Define

F (s) =
∞

X

n=0

fii (n)sn, P(s) =
∞

X

n=0

pii (n)sn.

Note that
F (1) = P(Ti < ∞ | X0 = i) and F ′(1) = µi .

Use the relation P(s) = 1 + F (s)P(s) to show that F (1) = 1 and F ′(1) = ∞.
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Stationary distributions

An important theorem

.

Theorem 6.4.3

.

.

.

. ..

.

.

An irreducible Markov chain has a stationary distribution π if and only if
all the states are non-null persistent; in this case, πi = 1/µi .

This is reasonable: since the chain returns the state i once in each period
µi on average, the probability that the chain stays at i will be 1/µi .

For proof, refer to Section 6.4.
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.

Example

.

.

.

. ..

.

.

Let P =

(
0.5 0.5
1 0

)
. Then π = (2/3, 1/3), which implies µ = (3/2, 3).

.

Example

.

.

.

. ..

.

.

For a simple random walk, the equation π = πP is written as
πi = pπi−1 + qπi+1. The general solution is πi = a + bi if p = q, and
πi = a + b(p/q)i if p 6= q. But there is no solution satisfying

∑
i πi = 1.

.

Example

.

.

.

. ..

.

.

Let S = {1, 2, · · · } and

P =


1/2 1/2 0 0 · · ·
1/2 0 1/2 0 · · ·
1/2 0 0 1/2 · · ·
...

...
...

...
. . .


Then πi = 2−i and µi = 2i .
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Limiting behavior

Let us see what happens when n → ∞.

.

Example (cont.)

.

.

.

. ..

.

.

P =


1/2 1/2 0 0 · · ·
1/2 0 1/2 0 · · ·
1/2 0 0 1/2 · · ·
...

...
...

...
. . .


One may find by induction

p1j(n) =


2−j if 1 ≤ j ≤ n,
2−n if j = n + 1,
0 if j ≥ n + 2.

Therefore p1j(n) → πj = 2−j as n → ∞.

14 / 32



A limit theorem

.

Theorem 6.4.17

.

.

.

. ..

.

.

For an irreducible aperiodic non-null persistent Markov chain, we have that

pij(n) → 1

µj
as n → ∞, for all i and j .

The proof is based on a coupling argument.

0 200 400 600 800 1200

0
20

40
60

80

time

st
at

e We cannot distinguish two chains
after they collide. Let one of them
have the stationary initial distribution.
See Section 6.4 for details.
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Ergodic theorem

We might use the following theorem in the future.

.

Ergodic theorem (Problem 7.11.32)

.

.

.

. ..

.

.

Let X be an irreducible non-null persistent Markov chain. Let f be any
bounded function on S . Then

1

n

n−1∑
r=1

f (Xr ) →
∑
i∈S

f (i)/µi as n → ∞,

with probability one.

Note that aperiodicity is not necessary here. The theorem plays a
fundamental role in the Markov chain Monte Carlo method.
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Finite state space

If S is finite, the things are quite simple.

.

Lemma 6.4.5

.

.

.

. ..

.

.

Let S be finite. If a Markov chain is irreducible, then it is non-null
persistent. In other words, πP = π has a unique solution.

This is a corollary of the Perron-Frobenius theorem (Theorem 6.6.1), a
proof of which is found in

J. Liesen and V. Mehrmann (2015). Linear Algebra, Springer
(available online).
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The following problems will be solved next week.

.

Exercise

.

.

.

. ..

.

.

Let P =

 0 2/3 1/3
1 0 0

4/5 1/5 0

.

.

.
.

1 Find the stationary distribution π.

.

.

.

2 Obtain the mean recurrence time µi = 1/πi .

.

.

.

3 Calculate µi by the definition.

.

Exercise

.

.

.

. ..

.

.

Let S = {1, 2, · · · } and P =


1/2 1/2 0 0 · · ·
1/3 1/3 1/3 0 · · ·
1/4 1/4 1/4 1/4 · · ·
...

...
...

...
. . .

.

Find the stationary distribution π if it exists.
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Summary

Keep in mind the following questions about Markov chains.

Is it irreducible? If no, study each irreducible component.

Is it aperiodic? If no, you may give up the limit theorem.

Does it have the stationary distribution?

If yes, it is non-null persistent.
If no, it is null persistent or transient.
Null persistence may be checked by generating functions.

Refer to Section 6.1 to 6.4 for further information.

Reversibility and MCMC → After the midterm exam.
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Outline today

.

. . 1 Review of last week’s material
Irreducibility and aperiodicity
Stationary distributions and the limit theorem

.

. .

2 Continuous-time Markov chains
The Poisson process
Continuous-time Markov chains
Generator

.

. .

3 Recommended problems

20 / 32



Counting processes

Now let us consider counting processes.

.

Examples

.

.

.

. ..

.

.

Geiger counter

Arrival of customers

E-mails

Goals in a soccer game
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The Poisson process

.

Definition

.

.

.

. ..

.

.

A Poisson process with intensity λ is a process {N(t)}t≥0 taking values in
S = {0, 1, · · · } such that

N(0) = 0.

(non-decreasing) If s < t, then N(s) ≤ N(t).

(rare events) As h → 0,

P(N(t + h) = n + m | N(t) = n) =


λh + o(h) if m = 1,
o(h) if m > 1,
1 − λh + o(h) if m = 0.

(independent increments) If s < t, then N(t) − N(s) is independent
of the history {N(u)}u≤s .
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Why Poisson?

The name “Poisson process” comes from the following fact.

.

Theorem

.

.

.

. ..

.

.

N(t) has the Poisson distribution with the parameter λt, that is,

P(N(t) = m) =
(λt)m

m!
e−λt .

A sketch of proof: Partition the interval [0, t] into M subintervals. Then

P(N(t) = m) '
(

M

m

) (
λt

M

)m (
1 − λt

M

)M−m

' (λt)m

m!
e−λt .
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Interarrival times

The following theorem is more useful for computer simulation.

.

Theorem

.

.

.

. ..

.

.

For the Poisson process with intensity λ, the interarrival times X1,X2, · · ·
are independent, each having the exponential distribution with the
parameter λ.

P (X1 ∈ [x1, x1 + dx1]) = P(N(x1) = 0)︸ ︷︷ ︸
e−λx1

P(N(x1 + dx1) = 1 | N(x1) = 0)︸ ︷︷ ︸
λdx1

= λe−λx1dx1.
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Continuous-time Markov chains

Next consider a continuous-time stochastic process {X (t)}t≥0 taking
values in a countable set S .

It is called a (continuous-time) Markov chain if “the future is
independent of the past given the present.”

We only consider homogeneous Markov chains.

.

Definition

.

.

.

. ..

.

.

The transition probability of a Markov chain is defined by

pij(t) = P(X (t) = j | X (0) = i).

.

Example

.

.

.

. ..

.

.

The Poisson process is a Markov chain with

pij(t) =
(λt)j−i

(j − i)!
e−λt , j ≥ i .
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Generator

It is natural to assume that there exists gij ∈ R such that

pij(h) = δij + gijh + o(h)

as h → 0, where δij is Kronecker’s delta.

.

Definition

.

.

.

. ..

.

.

The matrix G = (gij) is called the generator of the chain.

.

Example

.

.

.

. ..

.

.

The generator of the Poisson process is

gij =


λ if j = i + 1,
−λ if j = i ,
0 otherwise.

In general, gij ≥ 0 (j 6= i), gii ≤ 0, and
∑

j gij = 0.
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Holding time

The following proposition will be useful for computer simulation.

.

Claim 6.9.13 & 6.9.14

.

.

.

. ..

.

.

Let X (0) = i . The holding time U = inf{t ≥ 0 | X (t) 6= i} is
exponentially distributed with parameter −gii . The probability that the
chain jumps to j is gij/(−gii ).

.

Example

.

.

.

. ..

.

.

Let

G =


−1.5 0.5 0.5 0.5

1 −1 0 0
1 0 −1 0

0.3 0.2 0.2 −0.5


See the next slide for a result.
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Simulation

0 5 10 15 20 25 30

1.
0

2.
0

3.
0

4.
0

time

st
at

e

0 50 100 150 200 250 300

1.
0

2.
0

3.
0

4.
0

time

st
at

e

(up to t = 30) (up to t = 300)

# In R language

G = matrix(c(-1.5,.5,.5,.5, 1,-1,0,0, 1,0,-1,0, .3,.1,.1,-.5), 4,4, byrow=TRUE)

tmax = 30; i = 1; t = 0; is = c(i); ts = c(t)

while(t < tmax){

U = rexp(1, -G[i,i])

i = sample((1:4)[-i], 1, prob=G[i,-i] / (-G[i,i]))

t = t + U; is = c(is, i); ts = c(ts, t)

}

plot(ts, is, type="s", col="red", xlab="time", ylab="state"); points(ts, is)
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Forward equation

If a generator G is given, then the transition probability is obtained by the
forward equation. It is also called the master equation in application.

.

Claim 6.9.9 & 6.9.12

.

.

.

. ..

.

.

Let Pt = (pij(t))i ,j∈S . Then we have the forward equation

P′
t = PtG.

The solution is

Pt = exp(tG) =
∞∑

n=0

tn

n!
Gn.

If X (0) has a distribution µ(0), then the distribution µ(t) of X (t) satisfies

µ′(t) = µ(t)G.

A distribution π is stationary if and only if πG = 0.
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Examples

.

Birth-death process

.

.

.

. ..

.

.

y
© �

y
© �

y
© � · · ·

G =


−λ0 λ0 0 0 · · ·
µ1 −(λ1 + µ1) λ1 0 · · ·
0 µ2 −(λ2 + µ2) λ2
...

. . .
. . .

. . .


Is there a stationary distribution? → will be answered next week
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Question

Do you remember the death process introduced in the first lecture?

G =



0
1 −1

2 −2
. . .

. . .

. . .
. . .

n −n
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Recommended problems

Recommended problems:

§6.8, Problem 1, 2, 4*.

§6.9, Problem 1, 2.

The asterisk (*) shows difficulty.
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