Theory of Stochastic Processes 9. Stationary processes

> Tomonari Sei sei@mist.i.u-tokyo.ac.jp

Department of Mathematical Informatics, University of Tokyo

June 15, 2017

http://www.stat.t.u-tokyo.ac.jp/~sei/lec.html

Handouts:

- Slides (this one)
- Lecture notes for today (main material)
- Copy of Section 9.4

Announcements:

• If you have claims about the midterm exam, please contact me by today.

Review of last week's material

2 Sta

Stationary processes

- Autocovariance
- Spectral distribution
- Causal processes

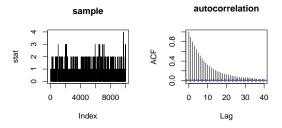
Review of last week

Example (a toy example)

 $\bullet~\Theta$ is the set of all length-20 strings consisting of 'A', 'G', 'C', 'T'.

- Let $\pi(\theta) \propto 2^{c(\theta)}$, where $c(\theta) = \sharp\{\text{``CAT'' in }\theta\}$.
- Estimate $\sum c(\theta)\pi(\theta)$ by the Gibbs sampler.

A result: 0.534 (standard error 0.028)



An R code \rightarrow web page

Remark: effective sample size

• The purpose of MCMC was to estimate $\mu = \sum g(\theta) \pi(\theta)$ by

$$\hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} g(\theta^{(n)}),$$

where $\{\theta^{(n)}\}_{n=1}^{N}$ is an outcome of the constructed Markov chain.

- But how much is the error of $\hat{\mu}$?
- The standard error of an estimator $\hat{\mu}$ is given by

$$\mathsf{se}(\hat{\mu}) = \sqrt{rac{\hat{V}}{N_{ ext{eff}}}}, \quad N_{ ext{eff}} = rac{N}{\sum_{n=-\infty}^{\infty} \hat{
ho}(n)},$$

where \hat{V} is the sample variance of $\{g(\theta^{(n)})\}\)$ and $\hat{\rho}$ is an estimated autocorrelation function (\rightarrow today's topic).

- The quantity $N_{\rm eff}$ is called the effective sample size.
- In the R language, the package 'coda' offers a function effectiveSize.

Metropolis-Hastings algorithm

- Given $X_n = i$, choose j according to a proposal matrix h_{ij} .
- Let $X_{n+1} = j$ with the acceptance probability a_{ij} , where

$$a_{ij} = \min\left(1, rac{\pi_j h_{ji}}{\pi_i h_{ij}}
ight),$$

and
$$X_{n+1} = i$$
 with probability $1 - a_{ij}$.

Exercise

Let $\Theta = \mathbb{Z} = \{0, \pm 1, \cdots\}$ and $\pi_i \propto e^{-i^2/2}$. Define a proposal matrix by

$$h_{ij} = \begin{cases} 1/3 & \text{if } j \in \{i-1, i, i+1\}, \\ 0 & \text{otherwise.} \end{cases}$$

Calculate the acceptance probability a_{ij} for each pair (i, j) with $h_{ij} \neq 0$.

Review of last week's material

2 Stationary processes

- Autocovariance
- Spectral distribution
- Causal processes

 \rightarrow see the lecture notes. I will use blackboard.

Recommended problems:

• Exercises in the lecture notes.