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Wasserstein distance

@ L? Wasserstein distance (= optimal transportation cost)
between p, and p, on R?

Wa(p1,p2) = Xllflg E[||X: — Xo|*]M?

> infimum over all joint distributions of (X7, X») with X; ~ p; and
Xo ~ py marginally (coupling)

p1 P2
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One-dimensional case
@ When d = 1, W; is explicitly given by the cdfs P; and Ps:

1 1/2
Waton,pr) = [ (R 0) = Py )Pa)
0
@ optimal coupling = monotone map

X; = Py (Py(Xy))

u P(x)
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Elliptically contoured family

@ When d > 2, W, is intractable in general..

@ elliptically contoured family (e.g. Gaussian)
» u: mean, X: covariance, f: shape

p(z | 1, %) = (det )2 f(|IZ7V3 (2 — w)))
Proposition (Gelbrich, 1990)

Wa(p(z | g1, 1), p(x | p2, 2))
1/2
= (||,u1 — pg|? + tr (21 Y, — 2(21/22221/2)1/2»

@ note: W, does not depend on the shape f
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Wasserstein v.s. Kullback-Leibler

@ bijective variable transformation

@ Kullback-Leibler divergence: invariant

DxL(p,q) = / (z)log Ez;dw

Dx1(p, G) = Dxwu(p,q)
@ Wasserstein distance: not invariant
WZ(ﬁ) Q)¢W2(p7 Q)
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Li-Zhao framework

@ Recently, Li and Zhao (2023) developed Wasserstein
counterparts of information geometric concepts

Kullback—Leibler divergence Wasserstein distance
Fisher score Wasserstein score

Fisher information matrix Wasserstein information matrix

covariance Wasserstein covariance
Cramer—Rao Wasserstein—Cramer—Rao
Fisher efficiency Wasserstein efficiency

@ We investigate their statistical meaning
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Continuity equation

9 p(a,1) = V. - (pla, V.8 (z)

@ This PDE describes dynamics of measure transport

@ intuition: Many particles are distributed with p(z, t) and they
move with velocity V,®(z)
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Example: 1d linear potential

%p(w,t) = =Vz - (p(z,8)V:®(2))

® &(z) =2 — V,P(x) =1 (const.)
@ p(z,0) = N(0,1) — p(x,t) = N(¢,1) (shift)

t=20 t=1
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Example: 1d quadratic potential

%p(w,t} ==V, (p(z,t)V,2(z))

@ O(z) =22 - V,9(z) =2z

@ p(z,0) =N(0,1) — p(z,t) = N(0,t + 1) (expansion)

t=20
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Wasserstein score function
Definition (Li and Zhao, 2023)

Fori=1,...,p, the Wasserstein score function ®\" (z | ) is the
solution of

V. (0o | Va2 (2] 0) = bl |0, Eol@ (x| 0)] =0

v

@ For infinitesimal 4, the map z +— z + 6V, @} (z | ) is the
optimal transport map from p(z | ) to p(x | 6 + de;) with
transportation cost

1/2
Wap(z | 0), p(a | 6+6e,)) = ( [ 16v.2% (@ o)1t | 9>dx)

» e;. t-th standard unit vector
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Wasserstein information matrix (WIM)
Definition (Li and Zhao, 2023)

The Wasserstein information matrix Gw(8) is the p x p matrix given

by
_ ( / a‘;p(x 16)- 8% (z | 0)dx)ij

@ cf. Fisher information matrix

Gel®) = ( [ gota16)- 35 | 0)ds )

i
(2] 6) = 2 logp(x | 6)
(90

@ inner product = pairing of tangent vector and cotangent vector

» information geometry: m-representation and e-representation
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Wasserstein information matrix (WIM)

Proposition (Li and Zhao, 2023)
Gw(9)ij = Eol(V. 2} (z | 6)) " (V2] (z | 9))]

Proposition (Li and Zhao, 2023)
Wa(p( | 9),p(z | 0 +6))* = 6" Gw (0)d + o(|5]|*)

@ WIM = Hessian of Wasserstein distance

» cf. Fisher information matrix = Hessian of Kullback—Leibler
divergence

@ WIM appears in Otto calculus and Wasserstein gradient flow
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Example: 1d Gaussian

bz |6) = — exp(—M), 0 = (1,0)

2mo?

@ Wasserstein distance

Wa(p(z | 61),p(z | 62))* = (1 — p2)? + (01 — 02)°
@ Wasserstein score function
W _ W _ (x — M)z — o’
(@l =c—p @F(@]6)="—L—"
@ Wasserstein information matrix

o= (3 )

@ More generally, 1d location-scale model is Euclidean (totally
geodesic) in L2-Wasserstein geometry
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Wasserstein estimator

Definition (Li and Zhao, 2023)

The Wasserstein estimator éw(z) is the zero of the Wasserstein
score function:

(¢ | bw(2)) =0, i=1,...,p

@ cf. MLE = zero of the Fisher score function = projection w.r.t.
Kullback—Leibler divergence

@ What does it mean??

» It is different from the projection w.r.t. Wasserstein distance
studied in Amari and M. (2022)
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Example: elliptically contoured family
p(z | 1, %) = (det Z) 2 F(|I=72(z — p)ll)

Theorem (Amari and M., 2024)
@ Wasserstein score functions are quadratic
@ Wasserstein estimator = 2nd-order moment estimator

1 & ~ 1
b=% n;x n;(x z)(z; — 7)

omonsnn (1), 1) WP
VoA

1(z\ (-0 1) (= AN
W _ (™ 1 L 4
ce-3 () (V)0 e
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Wasserstein covariance & Wasserstein—Cramer—Rao

Definition (Li and Zhao, 2023)

The Wasserstein covariance VarXV[é] of an estimator § is the p x p
positive semidefinite matrix given by

Vary' [0] = (Eo[(V.0:) " (Vb))

Theorem (Li and Zhao, 2023)
When § is unbiased (Eq[f] = 6),

Vary (0) = Gw(0)™!

@ What does it mean??
» cf. usual Cramer—Rao = lower bound of mean squared error
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Wasserstein covariance and robustness

X ~pa|0), Z~q(2)

@ We consider estimation of # from noisy observation X + Z
» E[Z] =0, Var|Z] = 0?1

Theorem (Amari and M., 2024)
Varl'[f] = lim Varg[0(X + Z)] — Varg[0(X)]

0250 o2

- % (Cove[éa(X), ABy(X)] + Covg[0s(X), Aéa(X)D

v
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Wasserstein covariance and robustness
Corollary (Amari and M., 2024)

It d is quadratic,

. Vary[0(X + Z)] — Varg[0(X)]

) o2

Vary [0] = li

@ Thus, Wasserstein covariance quantifies the robustness against
additive noise of quadratic estimators.

@ e.g. Wasserstein estimator for elliptically contoured family
p(z | %) = (det Z) 2 F(I=72(z — p)ll)
[:L = i =

@ “additive noise": not invariant w.r.t. transformation of x

» noise contamination ~ (random) transportation
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