統計学輪講 第24回
| 日時 | 2026年01月06日(火) 14時55分 ~ 15時45分 |
|---|---|
| 場所 | 経済学部新棟3階第3教室 および Zoom |
| 講演者 | 野口 泰正 (情報理工M1) |
| 演題 | Toward Drift Estimation for a Multi-Dimensional Diffusion Process with Jumps Using Deep Neural Networks(Paper Introduction, Schmidt-Hieber (2020), Oga & Koike (2024)) |
| 概要 |
Deep neural networks (DNNs) have recently achieved outstanding
performance in many large–scale learning tasks. From a
statistical viewpoint, an important question is whether such
models can overcome the classical curse of dimensionality in
nonparametric regression. Schmidt–Hieber (2020) [1] shows
that, when the target regression function admits a
hierarchical compositional structure, deep ReLU networks can
achieve near–optimal convergence rates that depend only on low
effective dimensions rather than the full input dimension.
Oga–Koike (2024) [2] extend this idea to nonparametric drift
estimation for multi–dimensional diffusion processes observed
at high frequency, establishing an oracle inequality and
(almost) minimax optimal rates. In this presentation, we
overview the main ideas of these two papers and briefly
discuss possible extensions to L´evy–driven SDEs.
|